|
--- |
|
language: |
|
- multilingual |
|
- zh |
|
- ja |
|
- ar |
|
- ko |
|
- de |
|
- fr |
|
- es |
|
- pt |
|
- hi |
|
- id |
|
- it |
|
- tr |
|
- ru |
|
- bn |
|
- ur |
|
- mr |
|
- ta |
|
- vi |
|
- fa |
|
- pl |
|
- uk |
|
- nl |
|
- sv |
|
- he |
|
- sw |
|
- ps |
|
tags: |
|
- text-classification |
|
- zero-shot-classification |
|
- nli |
|
- pytorch |
|
pipeline_tag: zero-shot-classification |
|
library_name: transformers |
|
license: mit |
|
base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 |
|
--- |
|
|
|
Multilingual mDeBERTa base model fineted on Text_emotions dataset. |
|
|
|
Dataset link : https://www.kaggle.com/datasets/nelgiriyewithana/emotions/data |
|
|
|
Finetuned for classifying text into sadness (0) joy (1) love (2) anger (3) fear (4) and surprise (5) emotions. |