File size: 46,915 Bytes
899554e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "name": "Untitled330.ipynb",
      "provenance": [],
      "collapsed_sections": []
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "code",
      "metadata": {
        "id": "Ii2x731Ta8fu"
      },
      "source": [
        "%%capture\n",
        "!pip install transformers\n",
        "!pip install datasets\n",
        "!pip install --upgrade git+https://github.com/google/flax.git"
      ],
      "execution_count": 1,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "_9NMPFKua9hr"
      },
      "source": [
        "import jax\n",
        "from transformers.modeling_flax_utils import FlaxPreTrainedModel\n",
        "import flax.linen as nn\n",
        "import jax.numpy as jnp\n",
        "from transformers import GPT2Config\n",
        "#from transformers import FlaxGPT2PreTrainedModel\n",
        "from transformers import FlaxGPT2Model\n",
        "import jax.numpy as jnp\n",
        "from transformers import GPT2Tokenizer\n",
        "tokenizer = GPT2Tokenizer.from_pretrained(\"gpt2\",pad_token='<|endoftext|>') \n",
        "from typing import Any, Optional, Tuple\n",
        "from flax.core.frozen_dict import FrozenDict, unfreeze\n",
        "from transformers import file_utils\n",
        "from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward\n",
        "from transformers.models.gpt2.modeling_flax_gpt2  import  FlaxGPT2BlockCollection\n",
        "from transformers.modeling_flax_outputs import FlaxBaseModelOutput"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "dqkcoBOccszd"
      },
      "source": [
        "GPT2_START_DOCSTRING = r\"\"\"\n",
        "    This model inherits from :class:`~transformers.FlaxPreTrainedModel`. Check the superclass documentation for the\n",
        "    generic methods the library implements for all its model (such as downloading or saving, resizing the input\n",
        "    embeddings, pruning heads etc.)\n",
        "    This model is also a Flax Linen `flax.nn.Module\n",
        "    <https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html>`__ subclass. Use it as a regular Flax\n",
        "    Module and refer to the Flax documentation for all matter related to general usage and behavior.\n",
        "    Finally, this model supports inherent JAX features such as:\n",
        "    - `Just-In-Time (JIT) compilation <https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit>`__\n",
        "    - `Automatic Differentiation <https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation>`__\n",
        "    - `Vectorization <https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap>`__\n",
        "    - `Parallelization <https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap>`__\n",
        "    Parameters:\n",
        "        config (:class:`~transformers.GPT2Config`): Model configuration class with all the parameters of the model.\n",
        "            Initializing with a config file does not load the weights associated with the model, only the\n",
        "            configuration. Check out the :meth:`~transformers.FlaxPreTrainedModel.from_pretrained` method to load the\n",
        "            model weights.\n",
        "\"\"\"\n",
        "\n",
        "GPT2_INPUTS_DOCSTRING = r\"\"\"\n",
        "    Args:\n",
        "        input_ids (:obj:`numpy.ndarray` of shape :obj:`(batch_size,input_ids_length)`):\n",
        "            :obj:`input_ids_length` = ``sequence_length``. Indices of input sequence tokens in the vocabulary.\n",
        "            Indices can be obtained using :class:`~transformers.GPT2Tokenizer`. See\n",
        "            :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for\n",
        "            details.\n",
        "            `What are input IDs? <../glossary.html#input-ids>`__\n",
        "        attention_mask (:obj:`numpy.ndarray` of shape :obj:`(batch_size, sequence_length)`, `optional`):\n",
        "            Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:\n",
        "            - 1 for tokens that are **not masked**,\n",
        "            - 0 for tokens that are **masked**.\n",
        "            `What are attention masks? <../glossary.html#attention-mask>`__\n",
        "        position_ids (:obj:`numpy.ndarray` of shape :obj:`(batch_size, sequence_length)`, `optional`):\n",
        "            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,\n",
        "            config.max_position_embeddings - 1]``.\n",
        "        past_key_values (:obj:`Dict[str, np.ndarray]`, `optional`, returned by ``init_cache`` or when passing previous ``past_key_values``):\n",
        "            Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast\n",
        "            auto-regressive decoding. Pre-computed key and value hidden-states are of shape `[batch_size, max_length]`.\n",
        "        output_attentions (:obj:`bool`, `optional`):\n",
        "            Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned\n",
        "            tensors for more detail.\n",
        "        output_hidden_states (:obj:`bool`, `optional`):\n",
        "            Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for\n",
        "            more detail.\n",
        "        return_dict (:obj:`bool`, `optional`):\n",
        "            Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.\n",
        "\"\"\""
      ],
      "execution_count": 3,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "NX-Z5iCMbKL5"
      },
      "source": [
        "class FlaxGGGPreTrainedModel(FlaxPreTrainedModel):\n",
        "    \"\"\"\n",
        "    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained\n",
        "    models.\n",
        "    \"\"\"\n",
        "\n",
        "    config_class = GPT2Config\n",
        "    base_model_prefix = \"transformer\"\n",
        "    module_class: nn.Module = None\n",
        "\n",
        "    def __init__(\n",
        "        self,\n",
        "        config: GPT2Config,\n",
        "        input_shape: Tuple = (1,1),\n",
        "        seed: int = 0,\n",
        "        dtype: jnp.dtype = jnp.float32,\n",
        "        **kwargs,\n",
        "    ):\n",
        "        \n",
        "        module = self.module_class(config=config, dtype=dtype, **kwargs)\n",
        "        super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype)\n",
        "\n",
        "    def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:\n",
        "        # init input tensors\n",
        "        input_ids = jnp.zeros(input_shape, dtype=\"i4\")\n",
        "        attention_mask = jnp.ones_like(input_ids)\n",
        "        \n",
        "        position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)\n",
        "\n",
        "        params_rng, dropout_rng = jax.random.split(rng)\n",
        "        rngs = {\"params\": params_rng, \"dropout\": dropout_rng}\n",
        "\n",
        "        return self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)[\"params\"]\n",
        "\n",
        "    def init_cache(self, batch_size, max_length):\n",
        "        r\"\"\"\n",
        "        Args:\n",
        "            batch_size (:obj:`int`):\n",
        "                batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.\n",
        "            max_length (:obj:`int`):\n",
        "                maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized\n",
        "                cache.\n",
        "        \"\"\"\n",
        "        # init input variables to retrieve cache\n",
        "        input_ids = jnp.ones((batch_size, max_length))\n",
        "        attention_mask = jnp.ones_like(input_ids)\n",
        "        position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)\n",
        "\n",
        "        init_variables = self.module.init(\n",
        "            jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True\n",
        "        )\n",
        "        return init_variables[\"cache\"]\n",
        "\n",
        "    @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)\n",
        "    def __call__(\n",
        "        self,\n",
        "        input_ids,\n",
        "        attention_mask=None,\n",
        "        position_ids=None,\n",
        "        params: dict = None,\n",
        "        past_key_values: dict = None,\n",
        "        dropout_rng: jax.random.PRNGKey = None,\n",
        "        train: bool = False,\n",
        "        output_attentions: Optional[bool] = None,\n",
        "        output_hidden_states: Optional[bool] = None,\n",
        "        return_dict: Optional[bool] = None,\n",
        "    ):\n",
        "        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions\n",
        "        output_hidden_states = (\n",
        "            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states\n",
        "        )\n",
        "        return_dict = return_dict if return_dict is not None else self.config.return_dict\n",
        "        print(input_ids.shape)\n",
        "\n",
        "     #   batch_size, num_choices,sequence_length = input_ids.shape\n",
        "\n",
        "        if position_ids is None:\n",
        "            if past_key_values is not None:\n",
        "                raise ValueError(\"Make sure to provide `position_ids` when passing `past_key_values`.\")\n",
        "            \n",
        "            position_ids=jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)\n",
        "\n",
        "        #    position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))\n",
        "\n",
        "        if attention_mask is None:\n",
        "            attention_mask = jnp.ones((input_ids))\n",
        "        print('attn not')\n",
        "\n",
        "        # Handle any PRNG if needed\n",
        "        rngs = {}\n",
        "        if dropout_rng is not None:\n",
        "            rngs[\"dropout\"] = dropout_rng\n",
        "\n",
        "        inputs = {\"params\": params or self.params}\n",
        "\n",
        "        # if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGPT2Attention module\n",
        "        if past_key_values:\n",
        "            inputs[\"cache\"] = past_key_values\n",
        "            mutable = [\"cache\"]\n",
        "        else:\n",
        "            mutable = False\n",
        "\n",
        "        outputs = self.module.apply(\n",
        "            inputs,\n",
        "            jnp.array(input_ids, dtype=\"i4\"),\n",
        "            jnp.array(attention_mask, dtype=\"i4\"),\n",
        "            jnp.array(position_ids, dtype=\"i4\"),\n",
        "            not train,\n",
        "            False,\n",
        "            output_attentions,\n",
        "            output_hidden_states,\n",
        "            return_dict,\n",
        "            rngs=rngs,\n",
        "            mutable=mutable,\n",
        "        )\n",
        "        print('cache')\n",
        "\n",
        "        # add updated cache to model output\n",
        "        if past_key_values is not None and return_dict:\n",
        "            outputs, past_key_values = outputs\n",
        "            outputs[\"past_key_values\"] = unfreeze(past_key_values[\"cache\"])\n",
        "            return outputs\n",
        "        elif past_key_values is not None and not return_dict:\n",
        "            outputs, past_key_values = outputs\n",
        "            outputs = outputs[:1] + (unfreeze(past_key_values[\"cache\"]),) + outputs[1:]\n",
        "\n",
        "        return outputs"
      ],
      "execution_count": 6,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "4vRAWll2bwQQ"
      },
      "source": [
        "class FlaxGGGModule(nn.Module):\n",
        "    config: GPT2Config\n",
        "    dtype: jnp.dtype = jnp.float32\n",
        "\n",
        "    def setup(self):\n",
        "        self.embed_dim = self.config.hidden_size\n",
        "\n",
        "        self.wte = nn.Embed(\n",
        "            self.config.vocab_size,\n",
        "            self.embed_dim,\n",
        "            embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),\n",
        "            dtype=self.dtype,\n",
        "        )\n",
        "        self.wpe = nn.Embed(\n",
        "            self.config.max_position_embeddings,\n",
        "            self.embed_dim,\n",
        "            embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),\n",
        "            dtype=self.dtype,\n",
        "        )\n",
        "        self.dropout = nn.Dropout(rate=self.config.embd_pdrop)\n",
        "        self.h = FlaxGPT2BlockCollection(self.config, dtype=self.dtype)\n",
        "        self.ln_f = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)\n",
        "\n",
        "    def __call__(\n",
        "        self,\n",
        "        input_ids,\n",
        "        attention_mask,\n",
        "        position_ids,\n",
        "        deterministic=True,\n",
        "        init_cache: bool = False,\n",
        "        output_attentions: bool = False,\n",
        "        output_hidden_states: bool = False,\n",
        "        return_dict: bool = True,\n",
        "    ):\n",
        "        input_embeds = self.wte(input_ids.astype(\"i4\"))\n",
        "        position_embeds = self.wpe(position_ids.astype(\"i4\"))\n",
        "        \n",
        "\n",
        "        hidden_states = input_embeds + position_embeds\n",
        "        hidden_states = self.dropout(hidden_states, deterministic=deterministic)\n",
        "        outputs = self.h(\n",
        "            hidden_states,\n",
        "            attention_mask,\n",
        "            deterministic=deterministic,\n",
        "            init_cache=init_cache,\n",
        "            output_attentions=output_attentions,\n",
        "            output_hidden_states=output_hidden_states,\n",
        "            return_dict=return_dict,\n",
        "        )\n",
        "\n",
        "        hidden_states = outputs[0]\n",
        "        hidden_states = self.ln_f(hidden_states)\n",
        "        print('ggg')\n",
        "        if not return_dict:\n",
        "            return (hidden_states,) + outputs[1:]\n",
        "\n",
        "        return FlaxBaseModelOutput(\n",
        "            last_hidden_state=hidden_states,\n",
        "            hidden_states=outputs.hidden_states,\n",
        "            attentions=outputs.attentions,)\n",
        "class FlaxNewModel(FlaxGGGPreTrainedModel):\n",
        "    module_class = FlaxGGGModule"
      ],
      "execution_count": 7,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "_ljSn6GdedtI"
      },
      "source": [
        "class FlaxGPT2ForMultipleChoiceModule(nn.Module):\n",
        "  config:GPT2Config\n",
        "  dtype: jnp.dtype = jnp.float32\n",
        "  def setup(self):\n",
        "    self.gpt2 = FlaxNewModel(config=self.config, dtype=self.dtype)\n",
        "    self.dropout = nn.Dropout(rate=0.2)\n",
        "    self.classifier = nn.Dense(4, dtype=self.dtype)\n",
        "\n",
        "  def __call__(self,input_ids,attention_mask,position_ids,return_dict=True,deterministic=True,*args):\n",
        "    batch_size = input_ids.shape[0]\n",
        "    rng=jax.random.PRNGKey(0)\n",
        "    _, dropout_rng = jax.random.split(rng)\n",
        "    print('abc')\n",
        "\n",
        "    outputs=self.gpt2(input_ids, attention_mask,position_ids,return_dict=return_dict)\n",
        "    \n",
        "\n",
        "    hidden_states = outputs[0]\n",
        "\n",
        "    \n",
        "    hidden_states= jnp.mean(hidden_states, axis=1)\n",
        "\n",
        "    print(hidden_states.shape)\n",
        "    \n",
        "    \n",
        "    hidden_states=hidden_states.reshape(batch_size,-1)         #(32,8,768)->(32,8*768)\n",
        "\n",
        "    dropout_output = self.dropout(hidden_states,deterministic=deterministic,rng=dropout_rng)\n",
        "\n",
        "    print(dropout_output.shape)\n",
        "    \n",
        "\n",
        "    logits = self.classifier(dropout_output)\n",
        "    print('bnv')\n",
        "    reshaped_logits = logits.reshape(-1, 4)   \n",
        "                  #(32,4)\n",
        "    if not return_dict:\n",
        "      return (reshaped_logits,) + outputs[2:]\n",
        "    return reshaped_logits"
      ],
      "execution_count": 8,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "M4UPf3Waexq0"
      },
      "source": [
        "class FlaxGPT2ForMultipleChoice(FlaxNewModel):\n",
        "    module_class = FlaxGPT2ForMultipleChoiceModule"
      ],
      "execution_count": 9,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "roQ3vls4e4TH"
      },
      "source": [
        "model = FlaxGPT2ForMultipleChoice.from_pretrained('gpt2')"
      ],
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "id": "E9qOSaaie417"
      },
      "source": [
        "input_ids=jnp.ones((1,2,11))\n",
        "attention_mask=jnp.ones((1,2,11))"
      ],
      "execution_count": 12,
      "outputs": []
    },
    {
      "cell_type": "code",
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 409
        },
        "id": "am7hYv8auWVy",
        "outputId": "0c8192ca-a0ab-432e-d483-46f8a2cc2576"
      },
      "source": [
        "out1 = model(input_ids, attention_mask)"
      ],
      "execution_count": 13,
      "outputs": [
        {
          "output_type": "stream",
          "text": [
            "(1, 2, 11)\n",
            "attn not\n",
            "ggg\n",
            "abc\n",
            "(1, 2, 11)\n",
            "attn not\n"
          ],
          "name": "stdout"
        },
        {
          "output_type": "error",
          "ename": "ValueError",
          "evalue": "ignored",
          "traceback": [
            "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
            "\u001b[0;31mValueError\u001b[0m                                Traceback (most recent call last)",
            "\u001b[0;32m<ipython-input-13-6be36035677e>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mout1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput_ids\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mattention_mask\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
            "\u001b[0;32m<ipython-input-6-de553f26d169>\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, input_ids, attention_mask, position_ids, params, past_key_values, dropout_rng, train, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m    112\u001b[0m             \u001b[0mreturn_dict\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    113\u001b[0m             \u001b[0mrngs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mrngs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 114\u001b[0;31m             \u001b[0mmutable\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmutable\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    115\u001b[0m         )\n\u001b[1;32m    116\u001b[0m         \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'cache'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/flax/linen/module.py\u001b[0m in \u001b[0;36mapply\u001b[0;34m(self, variables, rngs, method, mutable, capture_intermediates, *args, **kwargs)\u001b[0m\n\u001b[1;32m    964\u001b[0m         \u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    965\u001b[0m         \u001b[0mmutable\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmutable\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcapture_intermediates\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcapture_intermediates\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 966\u001b[0;31m     )(variables, *args, **kwargs, rngs=rngs)\n\u001b[0m\u001b[1;32m    967\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    968\u001b[0m   def init_with_output(self,\n",
            "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/flax/core/scope.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(variables, rngs, *args, **kwargs)\u001b[0m\n\u001b[1;32m    685\u001b[0m               **kwargs) -> Union[Any, Tuple[Any, VariableDict]]:\n\u001b[1;32m    686\u001b[0m     \u001b[0;32mwith\u001b[0m \u001b[0mbind\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvariables\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrngs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mrngs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmutable\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmutable\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtemporary\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mroot\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 687\u001b[0;31m       \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mroot\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    688\u001b[0m     \u001b[0;32mif\u001b[0m \u001b[0mmutable\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    689\u001b[0m       \u001b[0;32mreturn\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mroot\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmutable_variables\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/flax/linen/module.py\u001b[0m in \u001b[0;36mscope_fn\u001b[0;34m(scope, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1214\u001b[0m     \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcapture_intermediates\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1215\u001b[0m     \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1216\u001b[0;31m       \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodule\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclone\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparent\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mscope\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1217\u001b[0m     \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1218\u001b[0m       \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/flax/linen/module.py\u001b[0m in \u001b[0;36mwrapped_module_method\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    281\u001b[0m     \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodule_stack\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    282\u001b[0m     \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 283\u001b[0;31m       \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    284\u001b[0m       \u001b[0;32mif\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    285\u001b[0m         \u001b[0mfilter_fn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m<ipython-input-8-2c21e4c966c8>\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, input_ids, attention_mask, position_ids, return_dict, deterministic, *args)\u001b[0m\n\u001b[1;32m     13\u001b[0m     \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'abc'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     14\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 15\u001b[0;31m     \u001b[0moutputs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgpt2\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput_ids\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mattention_mask\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mposition_ids\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mreturn_dict\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mreturn_dict\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     16\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     17\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m<ipython-input-6-de553f26d169>\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, input_ids, attention_mask, position_ids, params, past_key_values, dropout_rng, train, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m    112\u001b[0m             \u001b[0mreturn_dict\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    113\u001b[0m             \u001b[0mrngs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mrngs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 114\u001b[0;31m             \u001b[0mmutable\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmutable\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    115\u001b[0m         )\n\u001b[1;32m    116\u001b[0m         \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'cache'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/flax/linen/module.py\u001b[0m in \u001b[0;36mapply\u001b[0;34m(self, variables, rngs, method, mutable, capture_intermediates, *args, **kwargs)\u001b[0m\n\u001b[1;32m    964\u001b[0m         \u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    965\u001b[0m         \u001b[0mmutable\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmutable\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcapture_intermediates\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcapture_intermediates\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 966\u001b[0;31m     )(variables, *args, **kwargs, rngs=rngs)\n\u001b[0m\u001b[1;32m    967\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    968\u001b[0m   def init_with_output(self,\n",
            "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/flax/core/scope.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(variables, rngs, *args, **kwargs)\u001b[0m\n\u001b[1;32m    685\u001b[0m               **kwargs) -> Union[Any, Tuple[Any, VariableDict]]:\n\u001b[1;32m    686\u001b[0m     \u001b[0;32mwith\u001b[0m \u001b[0mbind\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvariables\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrngs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mrngs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmutable\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmutable\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtemporary\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mroot\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 687\u001b[0;31m       \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mroot\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    688\u001b[0m     \u001b[0;32mif\u001b[0m \u001b[0mmutable\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mFalse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    689\u001b[0m       \u001b[0;32mreturn\u001b[0m \u001b[0my\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mroot\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmutable_variables\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/flax/linen/module.py\u001b[0m in \u001b[0;36mscope_fn\u001b[0;34m(scope, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1214\u001b[0m     \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcapture_intermediates\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1215\u001b[0m     \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1216\u001b[0;31m       \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodule\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mclone\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparent\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mscope\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1217\u001b[0m     \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1218\u001b[0m       \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/flax/linen/module.py\u001b[0m in \u001b[0;36mwrapped_module_method\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    281\u001b[0m     \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodule_stack\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    282\u001b[0m     \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 283\u001b[0;31m       \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    284\u001b[0m       \u001b[0;32mif\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    285\u001b[0m         \u001b[0mfilter_fn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m<ipython-input-7-b2eaa3f7b251>\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, input_ids, attention_mask, position_ids, deterministic, init_cache, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m     47\u001b[0m             \u001b[0moutput_attentions\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moutput_attentions\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     48\u001b[0m             \u001b[0moutput_hidden_states\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moutput_hidden_states\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 49\u001b[0;31m             \u001b[0mreturn_dict\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mreturn_dict\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     50\u001b[0m         )\n\u001b[1;32m     51\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/flax/linen/module.py\u001b[0m in \u001b[0;36mwrapped_module_method\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    281\u001b[0m     \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodule_stack\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    282\u001b[0m     \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 283\u001b[0;31m       \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    284\u001b[0m       \u001b[0;32mif\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    285\u001b[0m         \u001b[0mfilter_fn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/transformers/models/gpt2/modeling_flax_gpt2.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, hidden_states, attention_mask, deterministic, init_cache, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m    452\u001b[0m                 \u001b[0mdeterministic\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdeterministic\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    453\u001b[0m                 \u001b[0minit_cache\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minit_cache\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 454\u001b[0;31m                 \u001b[0moutput_attentions\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moutput_attentions\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    455\u001b[0m             )\n\u001b[1;32m    456\u001b[0m             \u001b[0mhidden_states\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlayer_outputs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/flax/linen/module.py\u001b[0m in \u001b[0;36mwrapped_module_method\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    281\u001b[0m     \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodule_stack\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    282\u001b[0m     \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 283\u001b[0;31m       \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    284\u001b[0m       \u001b[0;32mif\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    285\u001b[0m         \u001b[0mfilter_fn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/transformers/models/gpt2/modeling_flax_gpt2.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, hidden_states, attention_mask, deterministic, init_cache, output_attentions)\u001b[0m\n\u001b[1;32m    285\u001b[0m             \u001b[0mdeterministic\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdeterministic\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    286\u001b[0m             \u001b[0minit_cache\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minit_cache\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 287\u001b[0;31m             \u001b[0moutput_attentions\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moutput_attentions\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    288\u001b[0m         )\n\u001b[1;32m    289\u001b[0m         \u001b[0;31m# residual connection\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/flax/linen/module.py\u001b[0m in \u001b[0;36mwrapped_module_method\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    281\u001b[0m     \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodule_stack\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    282\u001b[0m     \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 283\u001b[0;31m       \u001b[0my\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    284\u001b[0m       \u001b[0;32mif\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    285\u001b[0m         \u001b[0mfilter_fn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_context\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcapture_stack\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/transformers/models/gpt2/modeling_flax_gpt2.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, hidden_states, attention_mask, deterministic, init_cache, output_attentions)\u001b[0m\n\u001b[1;32m    177\u001b[0m     ):\n\u001b[1;32m    178\u001b[0m         \u001b[0mqkv_out\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mc_attn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhidden_states\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 179\u001b[0;31m         \u001b[0mquery\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mjnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msplit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mqkv_out\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    180\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    181\u001b[0m         \u001b[0mquery\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_split_heads\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mquery\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/jax/_src/numpy/lax_numpy.py\u001b[0m in \u001b[0;36msplit\u001b[0;34m(ary, indices_or_sections, axis)\u001b[0m\n\u001b[1;32m   1806\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0m_wraps\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msplit\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1807\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0msplit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mary\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mindices_or_sections\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mint\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1808\u001b[0;31m   \u001b[0;32mreturn\u001b[0m \u001b[0m_split\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"split\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mary\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mindices_or_sections\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1809\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1810\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_split_on_axis\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnp_fun\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.7/dist-packages/jax/_src/numpy/lax_numpy.py\u001b[0m in \u001b[0;36m_split\u001b[0;34m(op, ary, indices_or_sections, axis)\u001b[0m\n\u001b[1;32m   1798\u001b[0m            + ((r + 1) * (part_size + 1) - 1)])\n\u001b[1;32m   1799\u001b[0m     \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1800\u001b[0;31m       \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"array split does not result in an equal division\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m   1801\u001b[0m   \u001b[0mstarts\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mends\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mndim\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mary\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mary\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1802\u001b[0m   \u001b[0m_subval\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mlambda\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mv\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0msubvals\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mv\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;31mValueError\u001b[0m: array split does not result in an equal division"
          ]
        }
      ]
    }
  ]
}