File size: 27,428 Bytes
26ca17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
import logging
import random

import torch
from torch.cuda.amp import autocast as autocast
import torch.nn as nn

from minigpt4.common.registry import registry
from minigpt4.models.blip2 import Blip2Base, disabled_train
from minigpt4.models.modeling_llama_v2 import LlamaForCausalLM
from minigpt4.conversation.conversation import Conversation, SeparatorStyle, StoppingCriteriaList, StoppingCriteriaSub

from transformers import LlamaTokenizer, CodeLlamaTokenizer, BitsAndBytesConfig

from peft import (
    LoraConfig,
    get_peft_model,
    prepare_model_for_kbit_training
)
import time
import numpy as np

from minigpt4.models import policies


@registry.register_model("mini_gpt4v")
class MiniGPT4v(Blip2Base):
    """
    BLIP2 GPT-LLAMA model.
    """

    PRETRAINED_MODEL_CONFIG_DICT = {
        "pretrain_vicuna": "configs/models/minigpt4.yaml",
    }

    def __init__(
        self,
        vit_model="eva_clip_g",
        img_size=224,
        drop_path_rate=0,
        use_grad_checkpoint=False,
        vit_precision="fp16",
        freeze_vit=True,
        llama_model="",
        prompt_path="",
        prompt_template="",
        max_txt_len=32,
        low_resource=False,  # use 8 bit and put vit in cpu
        end_sym='\n',
        lora_r = 8,
        lora_target_modules = ["q_proj","v_proj"],
        lora_alpha=16,
        # lora_r = 16,
        # lora_target_modules = ["q_proj","v_proj","v_proj"],
        lora_dropout= 0.05,
        ckpt_path = "",
        system_prompt= False,
        chat_template=False,
        token_pooling=True,
        use_grad_checkpoint_llm=False,
        max_context_len=3800,
        remove_template = False,

    ):
        super().__init__()

        self.tokenizer = self.init_tokenizer()
        self.low_resource = low_resource
        self.token_pooling = token_pooling
        self.remove_template = remove_template

        print("token pooling", self.token_pooling)


        self.use_grad_checkpoint_llm = use_grad_checkpoint_llm
        self.max_context_len = max_context_len
        self.chat_template = chat_template

        # print('Loading VIT')
        # self.visual_encoder, self.ln_vision = self.init_vision_encoder(
        #     vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision
        # )


        print("vit precision", vit_precision)
        self.visual_encoder, self.ln_vision = self.init_vision_encoder(
            vit_model, 224, drop_path_rate, use_grad_checkpoint, vit_precision
        )
        for name, param in self.visual_encoder.named_parameters():
            param.requires_grad = False
        self.visual_encoder = self.visual_encoder.eval()
        self.visual_encoder.train = disabled_train
        for name, param in self.ln_vision.named_parameters():
            param.requires_grad = False
        self.ln_vision = self.ln_vision.eval()
        self.ln_vision.train = disabled_train
        logging.info("freeze vision encoder")
        print("freeze the vision encoder")


        print('Loading VIT Done')

        # print("visual encoder shape", self.visual_encoder.pos_embed.shape)
        # assert False

        print('Loading LLAMA')


        self.B_SYS, self.E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"

        if 'CodeLlama' in llama_model:
            self.llama_tokenizer = CodeLlamaTokenizer.from_pretrained(llama_model, use_fast=False)  #
            self.llama_tokenizer.pad_token = "$$"
        else:
            self.llama_tokenizer = LlamaTokenizer.from_pretrained(llama_model, use_fast=False)  #
            self.llama_tokenizer.pad_token = "$$"

        self.system_prompt = system_prompt

        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.bfloat16
        )



        self.llama_model = LlamaForCausalLM.from_pretrained(
            llama_model,
            quantization_config=bnb_config,
            device_map={"": 0}
        )

        # self.llama_model.gradient_checkpointing_enable()
        self.llama_model = prepare_model_for_kbit_training(self.llama_model)

        # self.llama_model.print_trainable_parameters()


        print('Loading LLAMA Done')

        self.merge_n = 3

        self.llama_proj = nn.Linear(
            1408 * self.merge_n**2, self.llama_model.config.hidden_size
        )

        self.max_txt_len = max_txt_len
        self.end_sym = end_sym

        if prompt_path:
            with open(prompt_path, 'r') as f:
                raw_prompts = f.read().splitlines()
            filted_prompts = [raw_prompt for raw_prompt in raw_prompts if "<ImageHere>" in raw_prompt]
            self.prompt_list = [prompt_template.format(p) for p in filted_prompts]
            print('Load {} training prompts'.format(len(self.prompt_list)))
            print('Prompt Example \n{}'.format(random.choice(self.prompt_list)))
        else:
            self.prompt_list = []

    def encode_img(self, image):
        device = image.device
        if len(image.shape) > 4: 
            image = image.reshape(-1, *image.shape[-3:])

        bs, ch, w, h = image.shape
        assert w % 224 == 0
        bw = w // 224
        assert h % 224 == 0
        bh = h // 224
        image_patches = image.view(bs, ch, bw, 224, bh, 224).permute(0, 2, 4, 1, 3, 5)  # bs, bw, bh, ch, 224, 224
        image_patches = image_patches.reshape(bs * bw * bh, ch, 224, 224)

        with self.maybe_autocast():
            image_patch_embeds = self.ln_vision(self.visual_encoder(image_patches)).to(device)

            image_patch_embeds = image_patch_embeds[:,1:,:].reshape(bs, bw, bh, 16, 16, image_patch_embeds.shape[-1])
            image_patch_embeds = image_patch_embeds.permute(0, 1, 3, 2, 4, 5)  # bs, bw, 16, bh, 16, hs
            image_embeds = image_patch_embeds.reshape(bs, bw * 16 * bh * 16, image_patch_embeds.shape[-1])

            bs, pn, hs = image_embeds.shape

            image_embeds = image_embeds.view(bs, int(pn/self.merge_n**2), int(hs*self.merge_n**2))

            inputs_llama = self.llama_proj(image_embeds)
            atts_llama = torch.ones(inputs_llama.size()[:-1], dtype=torch.long).to(image.device)
        return inputs_llama, atts_llama

    def get_context_emb(self, prompt, img_list):
        img_device = img_list[0].device
        prompt_segs = prompt.split('<ImageHere>')
        assert len(prompt_segs) == len(img_list) + 1, "Unmatched numbers of image placeholders and images."
        seg_tokens = [
            self.llama_tokenizer(
                seg, return_tensors="pt", add_special_tokens=i==0).to(img_device).input_ids  # only add bos to the first seg
            for i, seg in enumerate(prompt_segs)
        ]

        seg_embs = [self.embed_tokens(seg_t) for seg_t in seg_tokens]

        mixed_embs = [emb for pair in zip(seg_embs[:-1], img_list) for emb in pair] + [seg_embs[-1]]

        mixed_embs = torch.cat(mixed_embs, dim=1)
        return mixed_embs

    def prompt_wrap(self, img_embeds, atts_img, prompts, lengths=None):
        if prompts is None or len(prompts) == 0:
            # prompts is not provided, just return the original image embedding
            return img_embeds, atts_img
        elif img_embeds is None:
            # prompt is provided but there is no image embedding. return the prompt embedding in right padding
            self.llama_tokenizer.padding_side = "right"
            prompt_tokens = self.llama_tokenizer(
                prompts,
                return_tensors="pt",
                padding="longest",
                add_special_tokens=False
            ).to(self.device)
            prompt_embeds = self.embed_tokens(prompt_tokens.input_ids)
            atts_prompt = prompt_tokens.attention_mask
            return prompt_embeds, atts_prompt

        else:
            # return the multi-modal embedding in right padding
            emb_lists = []

            for idx, (each_img_embed, each_prompt) in enumerate(zip(img_embeds, prompts)):
                pn = each_img_embed.shape[-2]
                if lengths is not None:
                    each_img_embed = each_img_embed.reshape(-1, each_img_embed.shape[-1])
                    each_img_embed = each_img_embed[:lengths[idx] * pn]

                p_segs = each_prompt.split('<ImageHere>')
                interleave_emb = []
                for idx, seg in enumerate(p_segs[:-1]):
                    p_tokens = self.llama_tokenizer(seg, return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
                    p_embed = self.embed_tokens(p_tokens.input_ids)
                    interleave_emb.append(torch.cat([p_embed, each_img_embed[None][:, idx*pn:(idx+1)*pn]], dim=1))

                wrapped_emb = torch.cat(interleave_emb, dim=1)
                p_tokens = self.llama_tokenizer(p_segs[-1], return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
                p_embed = self.embed_tokens(p_tokens.input_ids)
                wrapped_emb = torch.cat([wrapped_emb,p_embed], dim=1)
                emb_lists.append(wrapped_emb)

            emb_lens = [emb.shape[1] for emb in emb_lists]
            pad_emb = self.embed_tokens(torch.tensor(self.llama_tokenizer.pad_token_id, device=img_embeds.device))

            max_length = max(emb_lens) if max(emb_lens) < self.max_context_len else self.max_context_len
            wrapped_embs = pad_emb.expand(len(emb_lens), max_length, -1).clone()
            wrapped_atts = torch.zeros([len(emb_lens), max_length], dtype=torch.int, device=img_embeds.device)

            for i, emb in enumerate(emb_lists):
                length = emb_lens[i] if emb_lens[i] < self.max_context_len else self.max_context_len
                wrapped_embs[i, :length] = emb[:, :length]
                wrapped_atts[i, :length] = 1

            return wrapped_embs, wrapped_atts

    def concat_emb_input_output(self, input_embs, input_atts, output_embs, output_atts):
        """
        Concatenate the batched input embedding and batched output embedding together.
        Both the input and the output embedding should be right padded.
        """

        input_lens = []
        cat_embs = []
        cat_atts = []

        for i in range(input_embs.size(0)):
            input_len = input_atts[i].sum()
            input_lens.append(input_len)

            cat_embs.append(
                torch.cat([
                    input_embs[i][:input_len],
                    output_embs[i],
                    input_embs[i][input_len:]
                ])
            )
            cat_atts.append(
                torch.cat([
                    input_atts[i][:input_len],
                    output_atts[i],
                    input_atts[i][input_len:]
                ])
            )
            # print('===================================')
            # print('check input emb: ', input_embs[i][this_input_ones-2:this_input_ones])
            # print('check pad emb: ', input_embs[i][this_input_ones:this_input_ones+2])
            # print('check out emb: ', output_embs[i][:2])
            # print('check out pad emb: ', output_embs[i][-2:])
            # print('+++++++++++++++++++++++++++++++++++')
            #
            # print('check attn before: ', input_atts[i][:this_input_ones])
            # print('check attn after: ', input_atts[i][this_input_ones:])
            # print('check attn gt before: ', output_atts[i][:3])
            # print('check attn gt after: ', output_atts[i][-3:])

        cat_embs = torch.stack(cat_embs)
        cat_atts = torch.stack(cat_atts)
        return cat_embs, cat_atts, input_lens

    def get_conv_emb(self, conv_q, conv_a, conv_img):
        """concatenate conversation and make sure the model is only trained to regress the answer"""

        regress_embs_list = []
        targets_list = []

        batch_size = len(conv_q)
        for batch_idx in range(batch_size):
            questions, answers = conv_q[batch_idx], conv_a[batch_idx]
            assigned_imgs = conv_img[batch_idx]
            questions = [self.prompt_wrap(
                img_embeds=img,
                atts_img=None,
                prompts=[q],
                lengths=[img.shape[1]] if img is not None else None) for q, img in zip(questions, assigned_imgs)]
            q_embs = [emb for emb, _ in questions]

            answers = [self.llama_tokenizer(a, return_tensors="pt", add_special_tokens=False).to(self.device) for a in answers]
            cur_emb = []
            cur_target = []
            for i in range(len(questions)):
                cur_emb.append(q_embs[i])
                cur_target.append(torch.ones_like(q_embs[i][..., 0], dtype=torch.int) * -100)

                cur_emb.append(self.embed_tokens(answers[i].input_ids))
                cur_target.append(answers[i].input_ids)

            cur_emb = torch.cat(cur_emb, dim=1)
            cur_target = torch.cat(cur_target, dim=1)

            regress_embs_list.append(cur_emb)
            targets_list.append(cur_target)

        max_len = min(max([target.shape[1] for target in targets_list]), self.max_txt_len)

        regress_embeds = torch.zeros([batch_size, max_len, cur_emb.shape[-1]], device=self.device)
        regress_attn = torch.zeros([batch_size, max_len], dtype=torch.int, device=self.device)
        targets = torch.ones([batch_size, max_len], dtype=torch.long, device=self.device) * -100

        for batch_idx in range(batch_size):
            cur_len = regress_embs_list[batch_idx].shape[1]
            regress_embeds[batch_idx, :cur_len] = regress_embs_list[batch_idx][0, :max_len]
            regress_attn[batch_idx, :cur_len] = 1
            targets[batch_idx, :cur_len] = targets_list[batch_idx][0, :max_len]

        return regress_embeds, regress_attn, targets

    def preparing_embedding(self, samples):
        def remove_special_tokens(data):
            
            # if "instruction_input" in data:
            data = [instruct.replace(" [caption]","") for instruct in data]
            data = [instruct.replace(" [vqa]","") for instruct in data]
            data = [instruct.replace(" [grounding]","") for instruct in data]
            data = [instruct.replace(" [identify]","") for instruct in data]
            data = [instruct.replace(" [refer]","") for instruct in data]
            return data

        ### prepare input tokens
        if 'image' in samples:
            img_embeds, img_atts = self.encode_img(samples["image"])
        else:
            img_embeds = img_atts = None

        if 'conv_q' in samples:
            # handeling conversation datasets
            conv_q, conv_a = samples['conv_q'], samples['conv_a']

            connect_sym = samples['connect_sym'][0]
            conv_q = [q.split(connect_sym)for q in conv_q]
            conv_a = [a.split(connect_sym) for a in conv_a]
            conv_img = assign_imgs(conv_q, img_embeds)

            if self.chat_template:
                conv_q = [["[INST] " + item + "[/INST]" for item in items] for items in conv_q]

            regress_embeds, regress_atts, part_targets = self.get_conv_emb(conv_q, conv_a, conv_img)
            cond_embeds, cond_atts = regress_embeds[:, :0], regress_atts[:, :0]

        else:
            instruction = samples["instruction_input"] if "instruction_input" in samples else None

            # print("instruction before", instruction)
            if self.remove_template:
                instruction = remove_special_tokens(instruction)
            # print("instruction after", instruction)
                
            if self.chat_template:
                instruction = ["[INST] " + instruct + "[/INST]" for instruct in instruction]

            if 'length' in samples:
                # the input is a image train (like videos)
                bsz, pn, hs = img_embeds.shape
                img_embeds = img_embeds.reshape(len(samples['image']), -1, pn, hs)
                cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, instruction, samples['length'])
            else:
                cond_embeds, cond_atts = self.prompt_wrap(img_embeds, img_atts, instruction)

            ### prepare target tokens
            self.llama_tokenizer.padding_side = "right"
            text = [t + self.end_sym for t in samples["answer"]]

            regress_tokens = self.llama_tokenizer(
                text,
                return_tensors="pt",
                padding="longest",
                truncation=True,
                max_length=self.max_txt_len,
                add_special_tokens=False
            ).to(self.device)

            regress_token_ids = regress_tokens.input_ids
            regress_atts = regress_tokens.attention_mask
            part_targets = regress_token_ids.masked_fill(
                regress_token_ids == self.llama_tokenizer.pad_token_id, -100
            )

            regress_embeds = self.embed_tokens(regress_token_ids)

        return cond_embeds, cond_atts, regress_embeds, regress_atts, part_targets

    def forward(self, samples, reduction="mean"):
        # prepare the embedding to condition and the embedding to regress
        cond_embeds, cond_atts, regress_embeds, regress_atts, part_targets = \
            self.preparing_embedding(samples)

        # concat the embedding to condition and the embedding to regress
        inputs_embeds, attention_mask, input_lens = \
            self.concat_emb_input_output(cond_embeds, cond_atts, regress_embeds, regress_atts)

        # get bos token embedding
        bos = torch.ones_like(part_targets[:, :1]) * self.llama_tokenizer.bos_token_id
        bos_embeds = self.embed_tokens(bos)
        bos_atts = attention_mask[:, :1]

        # add bos token at the begining
        inputs_embeds = torch.cat([bos_embeds, inputs_embeds], dim=1)
        attention_mask = torch.cat([bos_atts, attention_mask], dim=1)

        # ensemble the final targets
        targets = torch.ones([inputs_embeds.shape[0], inputs_embeds.shape[1]],
                             dtype=torch.long).to(self.device).fill_(-100)
        for i, target in enumerate(part_targets):
            targets[i, input_lens[i]+1:input_lens[i]+len(target)+1] = target  # plus 1 for bos

        with self.maybe_autocast():
            outputs = self.llama_model(
                inputs_embeds=inputs_embeds,
                attention_mask=attention_mask,
                return_dict=True,
                labels=targets,
                reduction=reduction
            )
        loss = outputs.loss

        return {"loss": loss}

    @torch.no_grad()
    def generate(
        self,
        images,
        texts,
        use_nucleus_sampling=False,
        num_beams=1,
        max_new_tokens=20,
        min_length=1,
        top_p=0.9,
        repetition_penalty=1,
        length_penalty=1,
        temperature=1,
        do_sample=False,
        stop_words_ids=[2],
        lengths=None,
    ):
        '''
            function for generate test use
        '''

        stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(
            stops=[torch.tensor([i]).to(self.device) for i in stop_words_ids])])

        img_embeds, atts_img = self.encode_img(images.to(self.device))
        if lengths is not None:
            image_lists = []
            img_embeds = img_embeds.reshape(len(lengths), -1, img_embeds.shape[-2], img_embeds.shape[-1])
            for idx, img_embed in enumerate(img_embeds):
                image_lists.append([img_embed[i][None] for i in range(lengths[idx])])
        else:
            image_lists = [[image_emb[None]] for image_emb in img_embeds]
        assert len(texts) == len(image_lists)
        batch_embs = [self.get_context_emb(text, img_list) for text, img_list in zip(texts, image_lists)]

        batch_size = len(batch_embs)
        max_len = max([emb.shape[1] for emb in batch_embs])
        emb_dim = batch_embs[0].shape[2]
        dtype = batch_embs[0].dtype
        device = batch_embs[0].device

        embs = torch.zeros([batch_size, max_len, emb_dim], dtype=dtype, device=device)
        attn_mask = torch.zeros([batch_size, max_len], dtype=torch.int, device=device)
        for i, emb in enumerate(batch_embs):
            emb_len = emb.shape[1]
            embs[i, -emb_len:] = emb[0]
            attn_mask[i, -emb_len:] = 1

        with self.maybe_autocast():
            outputs = self.llama_model.generate(
                inputs_embeds=embs,
                attention_mask=attn_mask,
                max_new_tokens=max_new_tokens,
                num_beams=num_beams,
                do_sample=do_sample,
                # stopping_criteria=stopping_criteria,
            )

        answers = []
        for output_token in outputs:
            if output_token[0] == 0:
                output_token = output_token[1:]
            output_texts = self.llama_tokenizer.decode(output_token, skip_special_tokens=True)
            output_texts = output_texts.split('</s>')[0]  # remove the stop sign </s>
            output_texts = output_texts.replace("<s>", "")
            output_texts = output_texts.split(r'[/INST]')[-1].strip()
            answers.append(output_texts)

        return answers

    @torch.no_grad()
    def multi_select(self, images, texts, answers, num_cand=None):
        all_losses = []
        for answer in answers:
            choice_samples = {
                'image': images,
                'instruction_input': texts,
                'answer': answer
            }
            loss = self.forward(choice_samples, reduction='none')['loss'].reshape(-1, 1)
            all_losses.append(loss)
            torch.cuda.empty_cache()
        all_losses = torch.cat(all_losses, dim=-1)
        if num_cand is not None:
            for i in range(all_losses.shape[0]):
                all_losses[i, num_cand[i]:] = 9999
        output_class_ranks = torch.argsort(all_losses, dim=-1)
        return output_class_ranks.tolist()

    def predict_answers(
        self,
        samples,
        num_beams=5,
        inference_method="generate",
        max_len=10,
        min_len=1,
        num_ans_candidates=128,
        answer_list=None,
        prompt="",
        length_penalty=0,
        **kwargs
    ):
        '''
            function for open-ended VQA
        '''
        images = samples["image"].cuda()
        texts = samples["instruction_input"]

        output_text = self.generate(
            images=images,
            texts=texts,
            num_beams=num_beams,
            max_new_tokens=max_len,
            min_length=min_len,
            length_penalty=length_penalty
        )

        if "apply_lemmatizer" in samples.keys() and samples["apply_lemmatizer"]:
            output_text = self._lemmatize(output_text)

        return output_text

    def predict_class(
            self,
            samples,
            num_beams=5,
            inference_method="generate",
            max_len=10,
            min_len=1,
            num_ans_candidates=5,
            answer_list=None,
            prompt="",
            length_penalty=0,
            **kwargs
    ):
        '''
            function for multi-choice VQA
        '''

        image = samples["image"].cuda()
        instruction = samples['instruction_input']
        answers = samples["choices"]
        num_cand = samples["num_choices"]

        ranks = self.multi_select(image, instruction, answers, num_cand)

        pred_ans = []
        for i, rank in enumerate(ranks):
            pred = answers[rank[0]][i]
            pred_ans.append(pred)
        return pred_ans

    def embed_tokens(self, token_ids):
        try:
            embeds = self.llama_model.base_model.model.model.embed_tokens(token_ids)
        except AttributeError:
            embeds = self.llama_model.model.embed_tokens(token_ids)

        return embeds

    @classmethod
    def from_config(cls, cfg):
        vit_model = cfg.get("vit_model", "eva_clip_g")
        q_former_model = cfg.get("q_former_model", "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/blip2_pretrained_flant5xxl.pth")
        img_size = cfg.get("image_size")
        num_query_token = cfg.get("num_query_token")
        llama_model = cfg.get("llama_model")

        drop_path_rate = cfg.get("drop_path_rate", 0)
        use_grad_checkpoint = cfg.get("use_grad_checkpoint", False)
        vit_precision = cfg.get("vit_precision", "fp16")
        freeze_vit = cfg.get("freeze_vit", True)
        freeze_qformer = cfg.get("freeze_qformer", True)
        low_resource = cfg.get("low_resource", False)

        prompt_path = cfg.get("prompt_path", "")
        prompt_template = cfg.get("prompt_template", "")
        max_txt_len = cfg.get("max_txt_len", 300)
        end_sym = cfg.get("end_sym", '\n')

        lora_r = cfg.get("lora_r",64)
        lora_alpha = cfg.get("lora_alpha",16)
        chat_template = cfg.get("chat_template",False)
        system_prompt = cfg.get("system_prompt", False)
        token_pooling = cfg.get("token_pooling",True)

        use_grad_checkpoint_llm = cfg.get("use_grad_checkpoint_llm", False)
        max_context_len = cfg.get("max_context_len", 3800)
        remove_template = cfg.get("remove_template", False)


        model = cls(
            vit_model=vit_model,
            img_size=img_size,
            drop_path_rate=drop_path_rate,
            use_grad_checkpoint=use_grad_checkpoint,
            vit_precision=vit_precision,
            freeze_vit=freeze_vit,
            llama_model=llama_model,
            prompt_path=prompt_path,
            prompt_template=prompt_template,
            max_txt_len=max_txt_len,
            low_resource=low_resource,
            end_sym=end_sym,
            lora_r = lora_r,
            lora_alpha = lora_alpha,
            chat_template = chat_template,
            system_prompt = system_prompt,
            token_pooling = token_pooling,
            use_grad_checkpoint_llm=use_grad_checkpoint_llm,
            max_context_len=max_context_len,
            remove_template = remove_template
        )

        ckpt_path = cfg.get("ckpt", "")  # load weights of MiniGPT-4
        if ckpt_path:
            print("Load Minigpt-4-LLM Checkpoint: {}".format(ckpt_path))
            ckpt = torch.load(ckpt_path, map_location="cpu")
            msg = model.load_state_dict(ckpt['model'], strict=False)

        return model


def assign_imgs(batched_instruct_list, batched_img_embeds):
    '''this function is used when the data is interleaved.
    the interlevaed data is separated, and this function assign
    corresponding image embeddings to each segment'''
    if len(batched_img_embeds.shape) == 3:
        batched_img_embeds = batched_img_embeds[:, None]

    batched_assigned = []

    for instruct_list, img_embeds in zip(batched_instruct_list, batched_img_embeds):
        img_idx = 0
        assigned_img = []
        n_assigned = []
        for instruct in instruct_list:
            n_img = instruct.count('<ImageHere>')
            if n_img > 0:  # this instruction include images.
                assigned_img.append(img_embeds[None, img_idx:img_idx+n_img])
                img_idx += n_img
                n_assigned.append(n_img)
            else:  # this instruction doesn't include images
                assigned_img.append(None)
                n_assigned.append(None)
        batched_assigned.append(assigned_img)

    return batched_assigned