File size: 37,776 Bytes
7cdd981
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
"""
 # Copyright 2020 Adobe
 # All Rights Reserved.
 
 # NOTICE: Adobe permits you to use, modify, and distribute this file in
 # accordance with the terms of the Adobe license agreement accompanying
 # it.
 
"""

import os
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import time
import torch.nn as nn
from src.dataset.audio2landmark.audio2landmark_dataset import Speaker_aware_branch_Dataset
from src.models.model_audio2landmark_speaker_aware import Audio2landmark_speaker_aware
from src.models.model_audio2landmark import Audio2landmark_content
from util.utils import Record, get_n_params
from tensorboardX import SummaryWriter
from util.icp import icp
import numpy as np
from scipy.spatial.transform import Rotation as R
from scipy.signal import savgol_filter

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

class Speaker_aware_branch():

    def __init__(self, opt_parser):
        print('Run on device:', device)

        # Step 1 : load opt_parser
        for key in vars(opt_parser).keys():
            print(key, ':', vars(opt_parser)[key])
        self.opt_parser = opt_parser
        self.dump_dir = opt_parser.dump_dir
        self.std_face_id = np.loadtxt('dataset/utils/STD_FACE_LANDMARKS.txt')
        # self.std_face_id = np.loadtxt(
        #     os.path.join(opt_parser.root_dir, 'puppets', '{}_face_close_mouth.txt'.format(opt_parser.puppet_name)))

        self.std_face_id = self.std_face_id.reshape(1, 204)
        self.std_face_id = torch.tensor(self.std_face_id, requires_grad=False, dtype=torch.float).to(device)

        if(not opt_parser.test_end2end):
            # Step 2: Load dataset (train/eval)
            self.train_data = Speaker_aware_branch_Dataset(dump_dir=self.dump_dir, dump_name=opt_parser.dump_file_name,
                                                    num_window_frames=opt_parser.num_window_frames,
                                                    num_window_step=opt_parser.num_window_step,
                                                    status='train', use_11spk_only=opt_parser.use_11spk_only)
            self.train_dataloader = torch.utils.data.DataLoader(self.train_data, batch_size=opt_parser.batch_size,
                                                                shuffle=False, num_workers=0,
                                                                collate_fn=self.train_data.my_collate_in_segments)

            print('Train num videos: {}'.format(len(self.train_data)))
            self.eval_data = Speaker_aware_branch_Dataset(dump_dir=self.dump_dir, dump_name=opt_parser.dump_file_name,
                                                   num_window_frames=opt_parser.num_window_frames,
                                                   num_window_step=opt_parser.num_window_step,
                                                   status='val', use_11spk_only=opt_parser.use_11spk_only)
            self.eval_dataloader = torch.utils.data.DataLoader(self.eval_data, batch_size=opt_parser.batch_size,
                                                               shuffle=False, num_workers=0,
                                                               collate_fn=self.eval_data.my_collate_in_segments)
            print('EVAL num videos: {}'.format(len(self.eval_data)))
        else:
            self.eval_data = Speaker_aware_branch_Dataset(dump_dir='examples/dump',
                                                    dump_name='random',
                                                    status='val',
                                                    num_window_frames=18,
                                                    num_window_step=1)
            # self.eval_data = Speaker_aware_branch_Dataset(dump_dir=r'/mnt/ntfs/Dataset/TalkingToon/VoxCeleb2/dump',
            #                                               dump_name='celeb_normrot',
            #                                               num_window_frames=18,
            #                                               num_window_step=1,
            #                                               status='val', use_11spk_only=opt_parser.use_11spk_only)
            self.eval_dataloader = torch.utils.data.DataLoader(self.eval_data, batch_size=1,
                                                               shuffle=False, num_workers=0,
                                                               collate_fn=self.eval_data.my_collate_in_segments)
            print('EVAL num videos: {}'.format(len(self.eval_data)))
        # exit(0)

        # Step 3: Load model
        self.G = Audio2landmark_speaker_aware(
                                     spk_emb_enc_size=opt_parser.spk_emb_enc_size,
                                     transformer_d_model=opt_parser.transformer_d_model,
                                     N=opt_parser.transformer_N, heads=opt_parser.transformer_heads,
                                     pos_dim=opt_parser.pos_dim,
                                     use_prior_net=True)
        # self.G.apply(weight_init)
        for p in self.G.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)
        print('G: Running on {}, total num params = {:.2f}M'.format(device, get_n_params(self.G)/1.0e6))

        # self.D_L = Audio2landmark_pos_DL()
        # self.D_L.apply(weight_init)
        # print('D_L: Running on {}, total num params = {:.2f}M'.format(device, get_n_params(self.D_L)/1.0e6))
        #
        # self.D_T = Audio2landmark_pos_DT(spk_emb_enc_size=opt_parser.spk_emb_enc_size,
        #                                      transformer_d_model=opt_parser.transformer_d_model,
        #                                      N=opt_parser.transformer_N, heads=opt_parser.transformer_heads)
        # for p in self.D_T.parameters():
        #     if p.dim() > 1:
        #         nn.init.xavier_uniform_(p)
        # print('D_T: Running on {}, total num params = {:.2f}M'.format(device, get_n_params(self.D_T) / 1.0e6))

        if (opt_parser.init_content_encoder.split('/')[-1] != ''):
            model_dict = self.G.state_dict()
            ckpt = torch.load(opt_parser.init_content_encoder)
            pretrained_dict = {k: v for k, v in ckpt['model_g_face_id'].items()
                               if 'bilstm' in k or 'fc_prior' in k}
            model_dict.update(pretrained_dict)
            self.G.load_state_dict(model_dict)
            print('======== LOAD INIT POS MODEL {} ========='.format(opt_parser.init_content_encoder))

        if (opt_parser.load_a2l_G_name.split('/')[-1] != ''):
            model_dict = self.G.state_dict()
            ckpt = torch.load(opt_parser.load_a2l_G_name)
            pretrained_dict = {k: v for k, v in ckpt['G'].items()
                               if 'out.' not in k and 'out_pos_1.' not in k}
            model_dict.update(pretrained_dict)

            self.G.load_state_dict(model_dict)
            print('======== LOAD PRETRAINED SPEAKER AWARE MODEL {} ========='.format(opt_parser.load_a2l_G_name))

        self.G.to(device)

        ''' Speech content model '''
        self.C = Audio2landmark_content(num_window_frames=18, in_size=80, use_prior_net=True,
                                        bidirectional=False, drop_out=0.)
        ckpt = torch.load(opt_parser.load_a2l_C_name)
        self.C.load_state_dict(ckpt['model_g_face_id'])
        print('======== LOAD PRETRAINED FACE ID MODEL {} ========='.format(opt_parser.load_a2l_C_name))
        self.C.to(device)

        self.loss_mse = torch.nn.MSELoss()
        self.loss_bce = torch.nn.BCELoss()

        self.opt_G = optim.Adam(self.G.parameters(), lr=opt_parser.lr, weight_decay=opt_parser.reg_lr)

        # # test embeddings:
        self.test_embs = {}
        if(not opt_parser.test_end2end):
            for i, batch in enumerate(self.eval_dataloader):
                global_id, video_name = self.eval_data[i][0][1][0], self.eval_data[i][0][1][1][:-4]
                if(video_name.split('_x_')[1] not in self.test_embs.keys()):
                    inputs_fl, inputs_au, inputs_emb, _, _, _ = batch
                    self.test_embs[video_name.split('_x_')[1]] = inputs_emb[0]
        else:
            self.emb_data = Speaker_aware_branch_Dataset(dump_dir='examples/dump',
                                                         dump_name='celeb_normrot',
                                                         status='val',
                                                         num_window_frames=18,
                                                         num_window_step=1,
                                                         use_11spk_only=opt_parser.use_11spk_only)
            self.emb_dataloader = torch.utils.data.DataLoader(self.emb_data, batch_size=1,
                                                              shuffle=False, num_workers=0,
                                                              collate_fn=self.emb_data.my_collate_in_segments)
            for i, batch in enumerate(self.emb_dataloader):
                global_id, video_name = self.emb_data[i][0][1][0], self.emb_data[i][0][1][1][:-4]
                if(video_name.split('_x_')[1] not in self.test_embs.keys()):
                    inputs_fl, inputs_au, inputs_emb, _, _, _ = batch
                    self.test_embs[video_name.split('_x_')[1]] = inputs_emb[0]

        print(self.test_embs.keys(), len(self.test_embs.keys()))
        self.test_embs_dic = {key: i for i, key in enumerate(self.test_embs.keys())}

        if (opt_parser.write):
            self.writer = SummaryWriter(log_dir=os.path.join(opt_parser.log_dir, opt_parser.name))
            self.writer_count = {'TRAIN_epoch': 0, 'TRAIN_batch': 0, 'TRAIN_in_batch': 0,
                                 'EVAL_epoch': 0, 'EVAL_batch': 0, 'EVAL_in_batch': 0}

        self.t_shape_idx = (27, 28, 29, 30, 33, 36, 39, 42, 45)
        self.anchor_t_shape = np.loadtxt('dataset/utils//STD_FACE_LANDMARKS.txt')
        self.anchor_t_shape = self.anchor_t_shape[self.t_shape_idx, :]

    def __train_speaker_aware__(self, fls, aus, embs, face_id, reg_fls, rot_trans, rot_quats,
                                use_residual=False, is_training=True):

        fls_gt = fls[:, 0, :].detach().clone().requires_grad_(False)
        reg_fls_gt = reg_fls[:, 0, :].detach().clone().requires_grad_(False)

        if (face_id.shape[0] == 1):
            face_id = face_id.repeat(aus.shape[0], 1)
        face_id = face_id.requires_grad_(False)
        content_branch_face_id = face_id.detach()

        d_real_dt, d_fake_dt, d_real_dl, d_fake_dl, g_fake_dt, g_fake_dl, d_ano_dt = 0., 0., 0., 0., 0., 0., 0.
        #
        # ''' ======================================================
        #                 Discriminator  D_T
        # ====================================================== '''
        #
        # if (self.opt_parser.train_DT > 0.0):
        #     for name, p in self.G.named_parameters():
        #         p.requires_grad = False
        #     for p in self.D_T.parameters():
        #         p.requires_grad = True
        #     for p in self.D_L.parameters():
        #         p.requires_grad = False
        #     self.opt_D_T.zero_grad()
        #
        #     # real
        #     fl_dis_pred, _, spk_encode = self.G(aus, embs * self.opt_parser.emb_coef, face_id, fls_without_traj, z, add_z_spk=True)
        #
        #     d_real = self.D_T(fls_without_traj, spk_encode.detach())
        #     d_real_dt = self.loss_mse(d_real, torch.ones_like(d_real).to(device)) * 2.0 * self.opt_parser.train_DT
        #     if (is_training):
        #         d_real_dt.backward()
        #
        #     # fake
        #     d_fake = self.D_T(fl_dis_pred.detach() + face_id, spk_encode.detach())
        #     d_fake_dt = self.loss_mse(d_fake, torch.zeros_like(d_fake).to(device)) * self.opt_parser.train_DT
        #     if (is_training):
        #         d_fake_dt.backward()
        #
        #     # # another embedding
        #     # another_emb = np.tile(another_emb, (embs.shape[0], 1))
        #     # another_emb = torch.tensor(another_emb, dtype=torch.float, requires_grad=False).to(device)
        #     # d_ano = self.D_T(another_emb * self.opt_parser.emb_coef, fls_without_traj)
        #     # d_ano_dt = self.loss_mse(d_ano, torch.zeros_like(d_ano).to(device))
        #     # if (is_training):
        #     #     d_ano_dt.backward()
        #
        #     self.opt_D_T.step()
        #
        # ''' ======================================================
        #                 Discriminator  D_L
        # ====================================================== '''
        # if (self.opt_parser.train_DL>0.0):
        #     for p in self.D_L.parameters():
        #         p.requires_grad = True
        #     for p in self.D_T.parameters():
        #         p.requires_grad = False
        #     self.opt_D_L.zero_grad()
        #
        #     # real
        #     fl_dis_pred, _, spk_encode = self.G(aus, embs * self.opt_parser.emb_coef, face_id, fls_without_traj, z, add_z_spk=True)
        #
        #     d_real = self.D_L(fls_without_traj)
        #     d_real_dl = self.loss_mse(d_real, torch.ones_like(d_real).to(device)) * 1.0 * self.opt_parser.train_DL
        #     if (is_training):
        #         d_real_dl.backward()
        #
        #     # fake
        #     d_fake = self.D_L(fl_dis_pred + face_id)
        #     d_fake_dl = self.loss_mse(d_fake, torch.zeros_like(d_fake).to(device)) * self.opt_parser.train_DL
        #     if (is_training):
        #         d_fake_dl.backward()
        #
        #     self.opt_D_L.step()

        ''' ======================================================
                        Generator  G
        ====================================================== '''

        for name, p in self.G.named_parameters():
            p.requires_grad = True

        fl_dis_pred, pos_pred, _, spk_encode = self.G(aus,
                                            embs * self.opt_parser.emb_coef,
                                            face_id,
                                            add_z_spk=True)

        if (use_residual):
            baseline_pred_fls, _ = self.C(aus[:, 0:18, :], content_branch_face_id)

            ''' CALIBRATION in TEST TIME '''
            if (not is_training):

                smooth_length = int(min(fl_dis_pred.shape[0] - 1, 51) // 2 * 2 + 1)
                fl_dis_pred = savgol_filter(fl_dis_pred.cpu().numpy(), smooth_length, 3, axis=0)
                fl_dis_pred *= self.opt_parser.amp_pos

                # close pose-branch mouth
                fl_dis_pred = fl_dis_pred.reshape((-1, 68, 3))
                index1 = list(range(60-1, 55-1, -1))
                index2 = list(range(68-1, 65-1, -1))
                mean_out = 0.5 * (fl_dis_pred[:, 49:54] + fl_dis_pred[:, index1])
                mean_in = 0.5 * (fl_dis_pred[:, 61:64] + fl_dis_pred[:, index2])
                fl_dis_pred[:, 49:54] = fl_dis_pred[:, index1] = mean_out
                fl_dis_pred[:, 61:64] = fl_dis_pred[:, index2] = mean_in
                fl_dis_pred = fl_dis_pred.reshape(-1, 204)

                fl_dis_pred = torch.tensor(fl_dis_pred).to(device) * self.opt_parser.amp_pos

                mean_face_id = torch.mean(baseline_pred_fls.detach(), dim=0, keepdim=True)
                # option 1
                content_branch_face_id -= mean_face_id.view(1, 204) * 1.0
                baseline_pred_fls, _ = self.C(aus[:, 0:18, :], content_branch_face_id)
                # option 2
                # baseline_pred_fls -= mean_face_id
                baseline_pred_fls[:, 48 * 3::3] *= self.opt_parser.amp_lip_x  # mouth x
                baseline_pred_fls[:, 48 * 3 + 1::3] *= self.opt_parser.amp_lip_y  # mouth y

            fl_dis_pred += baseline_pred_fls.detach()

        # reconstruct face through pos
        fl_dis_pred = fl_dis_pred + face_id[0:1].detach()

        # reg fls loss
        loss_reg_fls = torch.nn.functional.l1_loss(fl_dis_pred, reg_fls_gt)

        # reg fls laplacian
        ''' use laplacian smooth loss '''
        loss_laplacian = 0.
        if (self.opt_parser.lambda_laplacian_smooth_loss > 0.0):
            n1 = [1] + list(range(0, 16)) + [18] + list(range(17, 21)) + [23] + list(range(22, 26)) + \
                 [28] + list(range(27, 35)) + [41] + list(range(36, 41)) + [47] + list(range(42, 47)) + \
                 [59] + list(range(48, 59)) + [67] + list(range(60, 67))
            n2 = list(range(1, 17)) + [15] + list(range(18, 22)) + [20] + list(range(23, 27)) + [25] + \
                 list(range(28, 36)) + [34] + list(range(37, 42)) + [36] + list(range(43, 48)) + [42] + \
                 list(range(49, 60)) + [48] + list(range(61, 68)) + [60]
            V = (fl_dis_pred + face_id[0:1]).view(-1, 68, 3)
            L_V = V - 0.5 * (V[:, n1, :] + V[:, n2, :])
            G = reg_fls_gt.view(-1, 68, 3)
            L_G = G - 0.5 * (G[:, n1, :] + G[:, n2, :])
            loss_laplacian = torch.nn.functional.l1_loss(L_V, L_G)

        # pos loss
        if(self.opt_parser.pos_dim == 7):
            pos_gt = torch.cat([rot_quats[:, 0], rot_trans[:, 0, :, 3]], dim=1)
            # pos_pred[:, 0:4] = torch.nn.functional.normalize(pos_pred[:, 0:4], p=2, dim=1)
            loss_pos = torch.nn.functional.l1_loss(pos_pred, pos_gt)
        else:
            pos_gt = rot_trans[:, 0].view(-1, 12)
            loss_pos = torch.nn.functional.l1_loss(pos_pred, pos_gt)

        loss = loss_reg_fls + loss_laplacian * self.opt_parser.lambda_laplacian_smooth_loss + loss_pos
        # loss = loss_pos

        if(is_training):
            self.opt_G.zero_grad()
            loss.backward()
            self.opt_G.step()

        if (self.opt_parser.pos_dim == 7):
            pos_pred[:, 0:4] = torch.nn.functional.normalize(pos_pred[:, 0:4], p=2, dim=1)
        return fl_dis_pred, pos_pred, face_id[0:1, :], (loss, loss_reg_fls, loss_laplacian, loss_pos)

    def __train_pass__(self, epoch, log_loss, is_training=True):
        st_epoch = time.time()

        # Step 1: init setup
        if (is_training):
            self.G.train()
            self.C.train()
            data = self.train_data
            dataloader = self.train_dataloader
            status = 'TRAIN'
        else:
            self.G.eval()
            self.C.eval()
            data = self.eval_data
            dataloader = self.eval_dataloader
            status = 'EVAL'

        # random_clip_index = np.random.randint(0, len(dataloader)-1, 4)
        # random_clip_index = np.random.randint(0, 64, 4)
        random_clip_index = list(range(len(dataloader)))
        print('random_clip_index', random_clip_index)
        # Step 2: train for each batch
        for i, batch in enumerate(dataloader):

            # if(i>=64):
            #     break

            st = time.time()
            global_id, video_name = data[i][0][1][0], data[i][0][1][1][:-4]


            # Step 2.1: load batch data from dataloader (in segments)
            inputs_fl, inputs_au, inputs_emb, inputs_reg_fl, inputs_rot_tran, inputs_rot_quat = batch
            # inputs_emb = torch.zeros(size=(inputs_au.shape[0], len(self.test_embs_dic.keys())))
            # this_emb = video_name.split('_x_')[1]
            # inputs_emb[:, self.test_embs_dic[this_emb]] = 1.

            if (is_training):
                rand_start = np.random.randint(0, inputs_fl.shape[0] // 5, 1).reshape(-1)
                inputs_fl = inputs_fl[rand_start[0]:]
                inputs_au = inputs_au[rand_start[0]:]
                inputs_emb = inputs_emb[rand_start[0]:]
                inputs_reg_fl = inputs_reg_fl[rand_start[0]:]
                inputs_rot_tran = inputs_rot_tran[rand_start[0]:]
                inputs_rot_quat = inputs_rot_quat[rand_start[0]:]

            inputs_fl, inputs_au, inputs_emb = inputs_fl.to(device), inputs_au.to(device), inputs_emb.to(device)
            inputs_reg_fl, inputs_rot_tran, inputs_rot_quat = inputs_reg_fl.to(device), inputs_rot_tran.to(device), inputs_rot_quat.to(device)

            std_fls_list, fls_pred_face_id_list, fls_pred_pos_list = [], [], []
            seg_bs = self.opt_parser.segment_batch_size

            close_fl_list = inputs_fl[::10, 0, :]
            idx = self.__close_face_lip__(close_fl_list.detach().cpu().numpy())
            input_face_id = close_fl_list[idx:idx + 1, :]

            ''' register face '''
            if (self.opt_parser.use_reg_as_std):
                landmarks = input_face_id.detach().cpu().numpy().reshape(68, 3)
                frame_t_shape = landmarks[self.t_shape_idx, :]
                T, distance, itr = icp(frame_t_shape, self.anchor_t_shape)
                landmarks = np.hstack((landmarks, np.ones((68, 1))))
                registered_landmarks = np.dot(T, landmarks.T).T
                input_face_id = torch.tensor(registered_landmarks[:, 0:3].reshape(1, 204), requires_grad=False,
                                             dtype=torch.float).to(device)

            for j in range(0, inputs_fl.shape[0], seg_bs):
                # Step 3.1: load segments
                inputs_fl_segments = inputs_fl[j: j + seg_bs]
                inputs_au_segments = inputs_au[j: j + seg_bs]
                inputs_emb_segments = inputs_emb[j: j + seg_bs]
                inputs_reg_fl_segments = inputs_reg_fl[j: j + seg_bs]
                inputs_rot_tran_segments = inputs_rot_tran[j: j + seg_bs]
                inputs_rot_quat_segments = inputs_rot_quat[j: j + seg_bs]

                if(inputs_fl_segments.shape[0] < 10):
                    continue

                if(self.opt_parser.test_emb):
                    input_face_id = self.std_face_id

                fl_dis_pred_pos, pos_pred, input_face_id, (loss, loss_reg_fls, loss_laplacian, loss_pos) = \
                    self.__train_speaker_aware__(inputs_fl_segments, inputs_au_segments, inputs_emb_segments,
                                                   input_face_id,  inputs_reg_fl_segments, inputs_rot_tran_segments,
                                                 inputs_rot_quat_segments,
                                                 is_training=is_training,
                                                   use_residual=self.opt_parser.use_residual)

                fl_dis_pred_pos = fl_dis_pred_pos.data.cpu().numpy()
                pos_pred = pos_pred.data.cpu().numpy()
                fl_std = inputs_reg_fl_segments[:, 0, :].data.cpu().numpy()
                pos_std = inputs_rot_tran_segments[:, 0, :].data.cpu().numpy()
                ''' solve inverse lip '''
                if(not is_training):
                    fl_dis_pred_pos = self.__solve_inverse_lip2__(fl_dis_pred_pos)

                fl_dis_pred_pos = fl_dis_pred_pos.reshape((-1, 68, 3))
                fl_std = fl_std.reshape((-1, 68, 3))
                if(self.opt_parser.pos_dim == 12):
                    pos_pred = pos_pred.reshape((-1, 3, 4))
                    for k in range(fl_dis_pred_pos.shape[0]):
                        fl_dis_pred_pos[k] = np.dot(pos_pred[k, :3, :3].T + np.eye(3),
                                                    (fl_dis_pred_pos[k] - pos_pred[k, :, 3].T).T).T
                    pos_std = pos_std.reshape((-1, 3, 4))
                    for k in range(fl_std.shape[0]):
                        fl_std[k] = np.dot(pos_std[k, :3, :3].T + np.eye(3),
                                                    (fl_std[k] - pos_std[k, :, 3].T).T).T
                else:
                    if(not is_training):
                        smooth_length = int(min(pos_pred.shape[0] - 1, 27) // 2 * 2 + 1)
                        pos_pred = savgol_filter(pos_pred, smooth_length, 3, axis=0)
                    quat = pos_pred[:, :4]
                    trans = pos_pred[:, 4:]
                    for k in range(fl_dis_pred_pos.shape[0]):
                        fl_dis_pred_pos[k] = np.dot(R.from_quat(quat[k]).as_matrix().T,
                                                    (fl_dis_pred_pos[k] - trans[k:k+1]).T).T
                    pos_std = pos_std.reshape((-1, 3, 4))
                    for k in range(fl_std.shape[0]):
                        fl_std[k] = np.dot(pos_std[k, :3, :3].T + np.eye(3),
                                           (fl_std[k] - pos_std[k, :, 3].T).T).T

                fls_pred_pos_list += [fl_dis_pred_pos.reshape((-1, 204))]
                std_fls_list += [fl_std.reshape((-1, 204))]

                for key in log_loss.keys():
                    if (key not in locals().keys()):
                        continue
                    if (type(locals()[key]) == float):
                        log_loss[key].add(locals()[key])
                    else:
                        log_loss[key].add(locals()[key].data.cpu().numpy())

            if (epoch % self.opt_parser.jpg_freq == 0 and i in random_clip_index):
                def save_fls_av(fake_fls_list, postfix='', ifsmooth=True):
                    fake_fls_np = np.concatenate(fake_fls_list)
                    filename = 'fake_fls_{}_{}_{}.txt'.format(epoch, video_name, postfix)
                    np.savetxt(
                        os.path.join(self.opt_parser.dump_dir, '../nn_result', self.opt_parser.name, filename),
                        fake_fls_np, fmt='%.6f')
                    audio_filename = '{:05d}_{}_audio.wav'.format(global_id, video_name)
                    from util.vis import Vis_old
                    Vis_old(run_name=self.opt_parser.name, pred_fl_filename=filename, audio_filename=audio_filename,
                        fps=62.5, av_name='e{:04d}_{}_{}'.format(epoch, i, postfix),
                        postfix=postfix, root_dir=self.opt_parser.root_dir, ifsmooth=ifsmooth)

                if (True):
                    if (self.opt_parser.show_animation):
                        print('show animation ....')
                        save_fls_av(fls_pred_pos_list, 'pred', ifsmooth=True)
                        save_fls_av(std_fls_list, 'std', ifsmooth=False)

            if (self.opt_parser.verbose <= 1):
                print('{} Epoch: #{} batch #{}/{}'.format(status, epoch, i, len(dataloader)), end=': ')
                for key in log_loss.keys():
                    print(key, '{:.5f}'.format(log_loss[key].per('batch')), end=', ')
                print('')
            self.__tensorboard_write__(status, log_loss, 'batch')

        if (self.opt_parser.verbose <= 2):
            print('==========================================================')
            print('{} Epoch: #{}'.format(status, epoch), end=':')
            for key in log_loss.keys():
                print(key, '{:.4f}'.format(log_loss[key].per('epoch')), end=', ')
            print('Epoch time usage: {:.2f} sec\n==========================================================\n'.format(time.time() - st_epoch))
        self.__save_model__(save_type='last_epoch', epoch=epoch)
        if(epoch % self.opt_parser.ckpt_epoch_freq == 0):
            self.__save_model__(save_type='e_{}'.format(epoch), epoch=epoch)
        self.__tensorboard_write__(status, log_loss, 'epoch')


    def test_end2end(self, jpg_shape):

        self.G.eval()
        self.C.eval()
        data = self.eval_data
        dataloader = self.eval_dataloader

        for i, batch in enumerate(dataloader):

            global_id, video_name = data[i][0][1][0], data[i][0][1][1][:-4]

            inputs_fl, inputs_au, inputs_emb, inputs_reg_fl, inputs_rot_tran, inputs_rot_quat = batch

            for key in ['irx71tYyI-Q', 'J-NPsvtQ8lE', 'Z7WRt--g-h4', 'E0zgrhQ0QDw', 'bXpavyiCu10', 'W6uRNCJmdtI', 'sxCbrYjBsGA', 'wAAMEC1OsRc', '_ldiVrXgZKc', '48uYS3bHIA8', 'E_kmpT-EfOg']:
                emb_val = self.test_embs[key]
                inputs_emb = np.tile(emb_val, (inputs_emb.shape[0], 1))
                inputs_emb = torch.tensor(inputs_emb, dtype=torch.float, requires_grad=False)

                # this_emb = key
                # inputs_emb = torch.zeros(size=(inputs_au.shape[0], len(self.test_embs_dic.keys())))
                # inputs_emb[:, self.test_embs_dic[this_emb]] = 1.

                inputs_fl, inputs_au, inputs_emb = inputs_fl.to(device), inputs_au.to(device), inputs_emb.to(device)
                inputs_reg_fl, inputs_rot_tran, inputs_rot_quat = inputs_reg_fl.to(device), inputs_rot_tran.to(device), inputs_rot_quat.to(device)

                std_fls_list, fls_pred_face_id_list, fls_pred_pos_list = [], [], []
                seg_bs = self.opt_parser.segment_batch_size

                # input_face_id = self.std_face_id
                input_face_id = torch.tensor(jpg_shape.reshape(1, 204), requires_grad=False, dtype=torch.float).to(device)

                ''' register face '''
                if (True):
                    landmarks = input_face_id.detach().cpu().numpy().reshape(68, 3)
                    frame_t_shape = landmarks[self.t_shape_idx, :]
                    T, distance, itr = icp(frame_t_shape, self.anchor_t_shape)
                    landmarks = np.hstack((landmarks, np.ones((68, 1))))
                    registered_landmarks = np.dot(T, landmarks.T).T
                    input_face_id = torch.tensor(registered_landmarks[:, 0:3].reshape(1, 204), requires_grad=False,
                                                 dtype=torch.float).to(device)

                for j in range(0, inputs_fl.shape[0], seg_bs):
                    # Step 3.1: load segments
                    inputs_fl_segments = inputs_fl[j: j + seg_bs]
                    inputs_au_segments = inputs_au[j: j + seg_bs]
                    inputs_emb_segments = inputs_emb[j: j + seg_bs]
                    inputs_reg_fl_segments = inputs_reg_fl[j: j + seg_bs]
                    inputs_rot_tran_segments = inputs_rot_tran[j: j + seg_bs]
                    inputs_rot_quat_segments = inputs_rot_quat[j: j + seg_bs]

                    if(inputs_fl_segments.shape[0] < 10):
                        continue

                    fl_dis_pred_pos, pos_pred, input_face_id, (loss, loss_reg_fls, loss_laplacian, loss_pos) = \
                        self.__train_speaker_aware__(inputs_fl_segments, inputs_au_segments, inputs_emb_segments,
                                                       input_face_id,  inputs_reg_fl_segments, inputs_rot_tran_segments,
                                                     inputs_rot_quat_segments,
                                                     is_training=False, use_residual=True)

                    fl_dis_pred_pos = fl_dis_pred_pos.data.cpu().numpy()
                    pos_pred = pos_pred.data.cpu().numpy()
                    fl_std = inputs_reg_fl_segments[:, 0, :].data.cpu().numpy()
                    pos_std = inputs_rot_tran_segments[:, 0, :].data.cpu().numpy()

                    ''' solve inverse lip '''
                    fl_dis_pred_pos = self.__solve_inverse_lip2__(fl_dis_pred_pos)

                    fl_dis_pred_pos = fl_dis_pred_pos.reshape((-1, 68, 3))
                    fl_std = fl_std.reshape((-1, 68, 3))
                    if(self.opt_parser.pos_dim == 12):
                        pos_pred = pos_pred.reshape((-1, 3, 4))
                        for k in range(fl_dis_pred_pos.shape[0]):
                            fl_dis_pred_pos[k] = np.dot(pos_pred[k, :3, :3].T + np.eye(3),
                                                        (fl_dis_pred_pos[k] - pos_pred[k, :, 3].T).T).T
                        pos_std = pos_std.reshape((-1, 3, 4))
                        for k in range(fl_std.shape[0]):
                            fl_std[k] = np.dot(pos_std[k, :3, :3].T + np.eye(3),
                                                        (fl_std[k] - pos_std[k, :, 3].T).T).T
                    else:
                        smooth_length = int(min(pos_pred.shape[0] - 1, 27) // 2 * 2 + 1)
                        pos_pred = savgol_filter(pos_pred, smooth_length, 3, axis=0)
                        quat = pos_pred[:, :4]
                        trans = pos_pred[:, 4:]
                        for k in range(fl_dis_pred_pos.shape[0]):
                            fl_dis_pred_pos[k] = np.dot(R.from_quat(quat[k]).as_matrix().T,
                                                        (fl_dis_pred_pos[k] - trans[k:k+1]).T).T
                        pos_std = pos_std.reshape((-1, 3, 4))
                        for k in range(fl_std.shape[0]):
                            fl_std[k] = np.dot(pos_std[k, :3, :3].T + np.eye(3),
                                               (fl_std[k] - pos_std[k, :, 3].T).T).T

                    fls_pred_pos_list += [fl_dis_pred_pos.reshape((-1, 204))]
                    std_fls_list += [fl_std.reshape((-1, 204))]

                fake_fls_np = np.concatenate(fls_pred_pos_list)
                filename = 'pred_fls_{}_{}.txt'.format(video_name.split('/')[-1], key)
                np.savetxt(os.path.join('examples', filename), fake_fls_np, fmt='%.6f')


    def __close_face_lip__(self, fl):
        facelandmark = fl.reshape(-1, 68, 3)
        from util.geo_math import area_of_polygon
        min_area_lip, idx = 999, 0
        for i, fls in enumerate(facelandmark):
            area_of_mouth = area_of_polygon(fls[list(range(60, 68)), 0:2])
            if (area_of_mouth < min_area_lip):
                min_area_lip = area_of_mouth
                idx = i
        return idx

    def train(self):
        train_loss = {key: Record(['epoch', 'batch']) for key in
                    ['loss','loss_laplacian', 'loss_reg_fls', 'loss_pos']}

        eval_loss = {key: Record(['epoch', 'batch']) for key in
                     ['loss','loss_laplacian', 'loss_reg_fls', 'loss_pos']}
        for epoch in range(self.opt_parser.nepoch):
            self.__train_pass__(epoch=epoch, log_loss=train_loss, is_training=True)
            # with torch.no_grad():
            #     self.__train_pass__(epoch=epoch, log_loss=eval_loss, is_training=False)

    def test(self):
        train_loss = {key: Record(['epoch', 'batch', 'in_batch']) for key in
                      ['loss', 'loss_g', 'loss_laplacian']}
        eval_loss = {key: Record(['epoch', 'batch', 'in_batch']) for key in
                     ['loss_pos', 'loss_g', 'loss_laplacian']}
        with torch.no_grad():
            self.__train_pass__(epoch=0, log_loss=eval_loss, is_training=False)

    def __tensorboard_write__(self, status, loss, t):
        if (self.opt_parser.write):
            for key in loss.keys():
                self.writer.add_scalar('{}_loss_{}_{}'.format(status, t, key), loss[key].per(t),
                                       self.writer_count[status + '_' + t])
                loss[key].clean(t)
            self.writer_count[status + '_' + t] += 1
        else:
            for key in loss.keys():
                loss[key].clean(t)

    def __save_model__(self, save_type, epoch):
        if (self.opt_parser.write):
            torch.save({
                'G': self.G.state_dict(),
                'epoch': epoch
            }, os.path.join(self.opt_parser.ckpt_dir, 'ckpt_{}.pth'.format(save_type)))

    def adjust_learning_rate(self, optimizer, epoch):
        """Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
        lr = self.opt_parser.lr * (0.3 ** (np.max((0, epoch + 0)) // 50))
        lr = np.max((lr, 1e-5))
        print('###### ==== > Adjust learning rate to ', lr)
        for param_group in optimizer.param_groups:
            param_group['lr'] = lr
            # print('lr:', param_group['lr'])

    def __solve_inverse_lip2__(self, fl_dis_pred_pos_numpy):
        for j in range(fl_dis_pred_pos_numpy.shape[0]):
            # init_face = self.std_face_id.detach().cpu().numpy()
            from util.geo_math import area_of_signed_polygon
            fls = fl_dis_pred_pos_numpy[j].reshape(68, 3)
            area_of_mouth = area_of_signed_polygon(fls[list(range(60, 68)), 0:2])
            if (area_of_mouth < 0):
                fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 63 * 3:64 * 3] + fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3])
                fl_dis_pred_pos_numpy[j, 63 * 3:64 * 3] = fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3]
                fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 62 * 3:63 * 3] + fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3])
                fl_dis_pred_pos_numpy[j, 62 * 3:63 * 3] = fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3]
                fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 61 * 3:62 * 3] + fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3])
                fl_dis_pred_pos_numpy[j, 61 * 3:62 * 3] = fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3]
                p = max([j-1, 0])
                fl_dis_pred_pos_numpy[j, 55 * 3+1:59 * 3+1:3] = fl_dis_pred_pos_numpy[j, 64 * 3+1:68 * 3+1:3] \
                                                          + fl_dis_pred_pos_numpy[p, 55 * 3+1:59 * 3+1:3] \
                                                          - fl_dis_pred_pos_numpy[p, 64 * 3+1:68 * 3+1:3]
                fl_dis_pred_pos_numpy[j, 59 * 3+1:60 * 3+1:3] = fl_dis_pred_pos_numpy[j, 60 * 3+1:61 * 3+1:3] \
                                                          + fl_dis_pred_pos_numpy[p, 59 * 3+1:60 * 3+1:3] \
                                                          - fl_dis_pred_pos_numpy[p, 60 * 3+1:61 * 3+1:3]
                fl_dis_pred_pos_numpy[j, 49 * 3+1:54 * 3+1:3] = fl_dis_pred_pos_numpy[j, 60 * 3+1:65 * 3+1:3] \
                                                          + fl_dis_pred_pos_numpy[p, 49 * 3+1:54 * 3+1:3] \
                                                          - fl_dis_pred_pos_numpy[p, 60 * 3+1:65 * 3+1:3]
        return fl_dis_pred_pos_numpy