File size: 1,942 Bytes
af05771
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
710d3b5
 
 
 
 
af05771
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
710d3b5
 
 
 
 
af05771
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
base_model: ViktorDo/EcoBERT-Pretrained
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: EcoBERT-finetuned-ner-copious
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# EcoBERT-finetuned-ner-copious

This model is a fine-tuned version of [ViktorDo/EcoBERT-Pretrained](https://huggingface.co/ViktorDo/EcoBERT-Pretrained) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0764
- Precision: 0.6144
- Recall: 0.6696
- F1: 0.6408
- Accuracy: 0.9747

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 63   | 0.1328          | 0.2586    | 0.3043 | 0.2796 | 0.9522   |
| No log        | 2.0   | 126  | 0.0885          | 0.4876    | 0.5681 | 0.5248 | 0.9688   |
| No log        | 3.0   | 189  | 0.0816          | 0.5514    | 0.5913 | 0.5706 | 0.9720   |
| No log        | 4.0   | 252  | 0.0764          | 0.6086    | 0.6536 | 0.6303 | 0.9748   |
| No log        | 5.0   | 315  | 0.0764          | 0.6144    | 0.6696 | 0.6408 | 0.9747   |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3