AlexWortega's picture
Update README.md
058d7b4 verified
|
raw
history blame
1.66 kB
metadata
library_name: transformers
tags:
  - trl
  - sft
datasets:
  - Vikhrmodels/Veles-2.5
  - dichspace/darulm
  - zjkarina/Vikhr_instruct

Veles Instruct [DONT TOUCH, Under Dev]

Просто лучшая русская инстракт модель

Метрки, DPO, коды для запуска подьедут позже

используйте transformers==4.36.2 и будет счастье

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model = AutoModelForCausalLM.from_pretrained("Vikhrmodels/Vikhr-7B-instruct_0.3",
                                             device_map="auto",
                                             attn_implementation="flash_attention_2",
                                             torch_dtype=torch.bfloat16)

tokenizer = AutoTokenizer.from_pretrained("Vikhrmodels/Vikhr-7B-instruct_0.3",use_fast=False)
from transformers import  AutoTokenizer, pipeline
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
prompts = [
    "В чем разница между фруктом и овощем?",
    "Годы жизни колмагорова?"]

def test_inference(prompt):
    prompt = pipe.tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True)
    print(prompt)
    outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95, eos_token_id=tokenizer.eos_token_id)
    return outputs[0]['generated_text'][len(prompt):].strip()


for prompt in prompts:
    print(f"    prompt:\n{prompt}")
    print(f"    response:\n{test_inference(prompt)}")
    print("-"*50)