|
import json |
|
import re |
|
from typing import Dict, List, Sequence, Union |
|
|
|
import partial_json_parser |
|
from partial_json_parser.core.options import Allow |
|
|
|
from vllm.entrypoints.openai.protocol import (ChatCompletionRequest, |
|
DeltaFunctionCall, DeltaMessage, |
|
DeltaToolCall, |
|
ExtractedToolCallInformation, |
|
FunctionCall, ToolCall) |
|
from vllm.entrypoints.openai.tool_parsers.abstract_tool_parser import ( |
|
ToolParser, ToolParserManager) |
|
from vllm.logger import init_logger |
|
from vllm.transformers_utils.tokenizer import AnyTokenizer, MistralTokenizer |
|
from vllm.utils import random_uuid |
|
|
|
logger = init_logger(__name__) |
|
|
|
|
|
@ToolParserManager.register_module("qwen2") |
|
class Qwen2ToolParser(ToolParser): |
|
|
|
def __init__(self, tokenizer: AnyTokenizer): |
|
super().__init__(tokenizer) |
|
|
|
if isinstance(self.model_tokenizer, MistralTokenizer): |
|
logger.error( |
|
"Detected Mistral tokenizer when using a Qwen2.5 model") |
|
self.model_tokenizer = self.model_tokenizer.tokenizer |
|
|
|
self.current_tool_name_sent: bool = False |
|
self.prev_tool_call_arr: List[Dict] = [] |
|
self.current_tool_id: int = -1 |
|
self.streamed_args_for_tool: List[str] = [ |
|
] |
|
|
|
self.tool_call_start_token: str = "<tool_call>" |
|
self.tool_call_end_token: str = "</tool_call>" |
|
|
|
self.tool_call_regex = re.compile( |
|
r"<tool_call>(.*?)</tool_call>", re.DOTALL) |
|
self.scratch_pad_regex = re.compile( |
|
r"<scratch_pad>(.*?)</scratch_pad>", re.DOTALL) |
|
|
|
if not self.model_tokenizer: |
|
raise ValueError( |
|
"The model tokenizer must be passed to the ToolParser " |
|
"constructor during construction.") |
|
self.tool_call_start_token_id = self.vocab.get( |
|
self.tool_call_start_token) |
|
self.tool_call_end_token_id = self.vocab.get(self.tool_call_end_token) |
|
if (self.tool_call_start_token_id is None |
|
or self.tool_call_end_token_id is None): |
|
raise RuntimeError( |
|
"Qwen2.5 Tool parser could not locate tool call start/end " |
|
"tokens in the tokenizer!") |
|
|
|
def extract_tool_calls( |
|
self, |
|
model_output: str, |
|
request: ChatCompletionRequest, |
|
) -> ExtractedToolCallInformation: |
|
|
|
|
|
if self.tool_call_start_token not in model_output: |
|
return ExtractedToolCallInformation(tools_called=False, |
|
tool_calls=[], |
|
content=model_output) |
|
|
|
else: |
|
|
|
try: |
|
|
|
|
|
function_call_strs = ( |
|
self.tool_call_regex.findall(model_output)) |
|
|
|
|
|
|
|
raw_function_calls = json.loads(function_call_strs[0]) |
|
|
|
tool_calls = [ |
|
ToolCall( |
|
type="function", |
|
function=FunctionCall( |
|
name=function_call["tool_name"], |
|
|
|
arguments=json.dumps(function_call["parameters"], ensure_ascii=False) |
|
) |
|
) |
|
for function_call in raw_function_calls |
|
] |
|
|
|
content = model_output[:model_output. |
|
find(self.tool_call_start_token)] |
|
return ExtractedToolCallInformation( |
|
tools_called=True, |
|
tool_calls=tool_calls, |
|
content=content if content else None) |
|
|
|
except Exception: |
|
logger.exception( |
|
"Error in extracting tool call from response.") |
|
return ExtractedToolCallInformation(tools_called=False, |
|
tool_calls=[], |
|
content=model_output) |
|
|
|
|
|
def extract_tool_calls_streaming( |
|
self, |
|
previous_text: str, |
|
current_text: str, |
|
delta_text: str, |
|
previous_token_ids: Sequence[int], |
|
current_token_ids: Sequence[int], |
|
delta_token_ids: Sequence[int], |
|
request: ChatCompletionRequest, |
|
) -> Union[DeltaMessage, None]: |
|
|
|
pass |