File size: 33,036 Bytes
221def3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 |
import os
import time
import numpy as np
from skimage import io
import time
import torch, gc
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
import torch.nn.functional as F
from data_loader_cache import get_im_gt_name_dict, create_dataloaders, GOSRandomHFlip, GOSResize, GOSRandomCrop, GOSNormalize #GOSDatasetCache,
from basics import f1_mae_torch #normPRED, GOSPRF1ScoresCache,f1score_torch,
from models import *
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def get_gt_encoder(train_dataloaders, train_datasets, valid_dataloaders, valid_datasets, hypar, train_dataloaders_val, train_datasets_val): #model_path, model_save_fre, max_ite=1000000):
# train_dataloaders, train_datasets = create_dataloaders(train_nm_im_gt_list,
# cache_size = hypar["cache_size"],
# cache_boost = hypar["cache_boost_train"],
# my_transforms = [
# GOSRandomHFlip(),
# # GOSResize(hypar["input_size"]),
# # GOSRandomCrop(hypar["crop_size"]),
# GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0]),
# ],
# batch_size = hypar["batch_size_train"],
# shuffle = True)
torch.manual_seed(hypar["seed"])
if torch.cuda.is_available():
torch.cuda.manual_seed(hypar["seed"])
print("define gt encoder ...")
net = ISNetGTEncoder() #UNETGTENCODERCombine()
## load the existing model gt encoder
if(hypar["gt_encoder_model"]!=""):
model_path = hypar["model_path"]+"/"+hypar["gt_encoder_model"]
if torch.cuda.is_available():
net.load_state_dict(torch.load(model_path))
net.cuda()
else:
net.load_state_dict(torch.load(model_path,map_location="cpu"))
print("gt encoder restored from the saved weights ...")
return net ############
if torch.cuda.is_available():
net.cuda()
print("--- define optimizer for GT Encoder---")
optimizer = optim.Adam(net.parameters(), lr=1e-3, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
model_path = hypar["model_path"]
model_save_fre = hypar["model_save_fre"]
max_ite = hypar["max_ite"]
batch_size_train = hypar["batch_size_train"]
batch_size_valid = hypar["batch_size_valid"]
if(not os.path.exists(model_path)):
os.mkdir(model_path)
ite_num = hypar["start_ite"] # count the total iteration number
ite_num4val = 0 #
running_loss = 0.0 # count the toal loss
running_tar_loss = 0.0 # count the target output loss
last_f1 = [0 for x in range(len(valid_dataloaders))]
train_num = train_datasets[0].__len__()
net.train()
start_last = time.time()
gos_dataloader = train_dataloaders[0]
epoch_num = hypar["max_epoch_num"]
notgood_cnt = 0
for epoch in range(epoch_num): ## set the epoch num as 100000
for i, data in enumerate(gos_dataloader):
if(ite_num >= max_ite):
print("Training Reached the Maximal Iteration Number ", max_ite)
exit()
# start_read = time.time()
ite_num = ite_num + 1
ite_num4val = ite_num4val + 1
# get the inputs
labels = data['label']
if(hypar["model_digit"]=="full"):
labels = labels.type(torch.FloatTensor)
else:
labels = labels.type(torch.HalfTensor)
# wrap them in Variable
if torch.cuda.is_available():
labels_v = Variable(labels.cuda(), requires_grad=False)
else:
labels_v = Variable(labels, requires_grad=False)
# print("time lapse for data preparation: ", time.time()-start_read, ' s')
# y zero the parameter gradients
start_inf_loss_back = time.time()
optimizer.zero_grad()
ds, fs = net(labels_v)#net(inputs_v)
loss2, loss = net.compute_loss(ds, labels_v)
loss.backward()
optimizer.step()
running_loss += loss.item()
running_tar_loss += loss2.item()
# del outputs, loss
del ds, loss2, loss
end_inf_loss_back = time.time()-start_inf_loss_back
print("GT Encoder Training>>>"+model_path.split('/')[-1]+" - [epoch: %3d/%3d, batch: %5d/%5d, ite: %d] train loss: %3f, tar: %3f, time-per-iter: %3f s, time_read: %3f" % (
epoch + 1, epoch_num, (i + 1) * batch_size_train, train_num, ite_num, running_loss / ite_num4val, running_tar_loss / ite_num4val, time.time()-start_last, time.time()-start_last-end_inf_loss_back))
start_last = time.time()
if ite_num % model_save_fre == 0: # validate every 2000 iterations
notgood_cnt += 1
# net.eval()
# tmp_f1, tmp_mae, val_loss, tar_loss, i_val, tmp_time = valid_gt_encoder(net, valid_dataloaders, valid_datasets, hypar, epoch)
tmp_f1, tmp_mae, val_loss, tar_loss, i_val, tmp_time = valid_gt_encoder(net, train_dataloaders_val, train_datasets_val, hypar, epoch)
net.train() # resume train
tmp_out = 0
print("last_f1:",last_f1)
print("tmp_f1:",tmp_f1)
for fi in range(len(last_f1)):
if(tmp_f1[fi]>last_f1[fi]):
tmp_out = 1
print("tmp_out:",tmp_out)
if(tmp_out):
notgood_cnt = 0
last_f1 = tmp_f1
tmp_f1_str = [str(round(f1x,4)) for f1x in tmp_f1]
tmp_mae_str = [str(round(mx,4)) for mx in tmp_mae]
maxf1 = '_'.join(tmp_f1_str)
meanM = '_'.join(tmp_mae_str)
# .cpu().detach().numpy()
model_name = "/GTENCODER-gpu_itr_"+str(ite_num)+\
"_traLoss_"+str(np.round(running_loss / ite_num4val,4))+\
"_traTarLoss_"+str(np.round(running_tar_loss / ite_num4val,4))+\
"_valLoss_"+str(np.round(val_loss /(i_val+1),4))+\
"_valTarLoss_"+str(np.round(tar_loss /(i_val+1),4)) + \
"_maxF1_" + maxf1 + \
"_mae_" + meanM + \
"_time_" + str(np.round(np.mean(np.array(tmp_time))/batch_size_valid,6))+".pth"
torch.save(net.state_dict(), model_path + model_name)
running_loss = 0.0
running_tar_loss = 0.0
ite_num4val = 0
if(tmp_f1[0]>0.99):
print("GT encoder is well-trained and obtained...")
return net
if(notgood_cnt >= hypar["early_stop"]):
print("No improvements in the last "+str(notgood_cnt)+" validation periods, so training stopped !")
exit()
print("Training Reaches The Maximum Epoch Number")
return net
def valid_gt_encoder(net, valid_dataloaders, valid_datasets, hypar, epoch=0):
net.eval()
print("Validating...")
epoch_num = hypar["max_epoch_num"]
val_loss = 0.0
tar_loss = 0.0
tmp_f1 = []
tmp_mae = []
tmp_time = []
start_valid = time.time()
for k in range(len(valid_dataloaders)):
valid_dataloader = valid_dataloaders[k]
valid_dataset = valid_datasets[k]
val_num = valid_dataset.__len__()
mybins = np.arange(0,256)
PRE = np.zeros((val_num,len(mybins)-1))
REC = np.zeros((val_num,len(mybins)-1))
F1 = np.zeros((val_num,len(mybins)-1))
MAE = np.zeros((val_num))
val_cnt = 0.0
i_val = None
for i_val, data_val in enumerate(valid_dataloader):
# imidx_val, inputs_val, labels_val, shapes_val = data_val['imidx'], data_val['image'], data_val['label'], data_val['shape']
imidx_val, labels_val, shapes_val = data_val['imidx'], data_val['label'], data_val['shape']
if(hypar["model_digit"]=="full"):
labels_val = labels_val.type(torch.FloatTensor)
else:
labels_val = labels_val.type(torch.HalfTensor)
# wrap them in Variable
if torch.cuda.is_available():
labels_val_v = Variable(labels_val.cuda(), requires_grad=False)
else:
labels_val_v = Variable(labels_val,requires_grad=False)
t_start = time.time()
ds_val = net(labels_val_v)[0]
t_end = time.time()-t_start
tmp_time.append(t_end)
# loss2_val, loss_val = muti_loss_fusion(ds_val, labels_val_v)
loss2_val, loss_val = net.compute_loss(ds_val, labels_val_v)
# compute F measure
for t in range(hypar["batch_size_valid"]):
val_cnt = val_cnt + 1.0
print("num of val: ", val_cnt)
i_test = imidx_val[t].data.numpy()
pred_val = ds_val[0][t,:,:,:] # B x 1 x H x W
## recover the prediction spatial size to the orignal image size
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[t][0],shapes_val[t][1]),mode='bilinear'))
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val-mi)/(ma-mi) # max = 1
# pred_val = normPRED(pred_val)
gt = np.squeeze(io.imread(valid_dataset.dataset["ori_gt_path"][i_test])) # max = 255
if gt.max()==1:
gt=gt*255
with torch.no_grad():
gt = torch.tensor(gt).to(device)
pre,rec,f1,mae = f1_mae_torch(pred_val*255, gt, valid_dataset, i_test, mybins, hypar)
PRE[i_test,:]=pre
REC[i_test,:] = rec
F1[i_test,:] = f1
MAE[i_test] = mae
del ds_val, gt
gc.collect()
torch.cuda.empty_cache()
# if(loss_val.data[0]>1):
val_loss += loss_val.item()#data[0]
tar_loss += loss2_val.item()#data[0]
print("[validating: %5d/%5d] val_ls:%f, tar_ls: %f, f1: %f, mae: %f, time: %f"% (i_val, val_num, val_loss / (i_val + 1), tar_loss / (i_val + 1), np.amax(F1[i_test,:]), MAE[i_test],t_end))
del loss2_val, loss_val
print('============================')
PRE_m = np.mean(PRE,0)
REC_m = np.mean(REC,0)
f1_m = (1+0.3)*PRE_m*REC_m/(0.3*PRE_m+REC_m+1e-8)
# print('--------------:', np.mean(f1_m))
tmp_f1.append(np.amax(f1_m))
tmp_mae.append(np.mean(MAE))
print("The max F1 Score: %f"%(np.max(f1_m)))
print("MAE: ", np.mean(MAE))
# print('[epoch: %3d/%3d, ite: %5d] tra_ls: %3f, val_ls: %3f, tar_ls: %3f, maxf1: %3f, val_time: %6f'% (epoch + 1, epoch_num, ite_num, running_loss / ite_num4val, val_loss/val_cnt, tar_loss/val_cnt, tmp_f1[-1], time.time()-start_valid))
return tmp_f1, tmp_mae, val_loss, tar_loss, i_val, tmp_time
def train(net, optimizer, train_dataloaders, train_datasets, valid_dataloaders, valid_datasets, hypar,train_dataloaders_val, train_datasets_val): #model_path, model_save_fre, max_ite=1000000):
if hypar["interm_sup"]:
print("Get the gt encoder ...")
featurenet = get_gt_encoder(train_dataloaders, train_datasets, valid_dataloaders, valid_datasets, hypar,train_dataloaders_val, train_datasets_val)
## freeze the weights of gt encoder
for param in featurenet.parameters():
param.requires_grad=False
model_path = hypar["model_path"]
model_save_fre = hypar["model_save_fre"]
max_ite = hypar["max_ite"]
batch_size_train = hypar["batch_size_train"]
batch_size_valid = hypar["batch_size_valid"]
if(not os.path.exists(model_path)):
os.mkdir(model_path)
ite_num = hypar["start_ite"] # count the toal iteration number
ite_num4val = 0 #
running_loss = 0.0 # count the toal loss
running_tar_loss = 0.0 # count the target output loss
last_f1 = [0 for x in range(len(valid_dataloaders))]
train_num = train_datasets[0].__len__()
net.train()
start_last = time.time()
gos_dataloader = train_dataloaders[0]
epoch_num = hypar["max_epoch_num"]
notgood_cnt = 0
for epoch in range(epoch_num): ## set the epoch num as 100000
for i, data in enumerate(gos_dataloader):
if(ite_num >= max_ite):
print("Training Reached the Maximal Iteration Number ", max_ite)
exit()
# start_read = time.time()
ite_num = ite_num + 1
ite_num4val = ite_num4val + 1
# get the inputs
inputs, labels = data['image'], data['label']
if(hypar["model_digit"]=="full"):
inputs = inputs.type(torch.FloatTensor)
labels = labels.type(torch.FloatTensor)
else:
inputs = inputs.type(torch.HalfTensor)
labels = labels.type(torch.HalfTensor)
# wrap them in Variable
if torch.cuda.is_available():
inputs_v, labels_v = Variable(inputs.cuda(), requires_grad=False), Variable(labels.cuda(), requires_grad=False)
else:
inputs_v, labels_v = Variable(inputs, requires_grad=False), Variable(labels, requires_grad=False)
# print("time lapse for data preparation: ", time.time()-start_read, ' s')
# y zero the parameter gradients
start_inf_loss_back = time.time()
optimizer.zero_grad()
if hypar["interm_sup"]:
# forward + backward + optimize
ds,dfs = net(inputs_v)
_,fs = featurenet(labels_v) ## extract the gt encodings
loss2, loss = net.compute_loss_kl(ds, labels_v, dfs, fs, mode='MSE')
else:
# forward + backward + optimize
ds,_ = net(inputs_v)
loss2, loss = net.compute_loss(ds, labels_v)
loss.backward()
optimizer.step()
# # print statistics
running_loss += loss.item()
running_tar_loss += loss2.item()
# del outputs, loss
del ds, loss2, loss
end_inf_loss_back = time.time()-start_inf_loss_back
print(">>>"+model_path.split('/')[-1]+" - [epoch: %3d/%3d, batch: %5d/%5d, ite: %d] train loss: %3f, tar: %3f, time-per-iter: %3f s, time_read: %3f" % (
epoch + 1, epoch_num, (i + 1) * batch_size_train, train_num, ite_num, running_loss / ite_num4val, running_tar_loss / ite_num4val, time.time()-start_last, time.time()-start_last-end_inf_loss_back))
start_last = time.time()
if ite_num % model_save_fre == 0: # validate every 2000 iterations
notgood_cnt += 1
net.eval()
tmp_f1, tmp_mae, val_loss, tar_loss, i_val, tmp_time = valid(net, valid_dataloaders, valid_datasets, hypar, epoch)
net.train() # resume train
tmp_out = 0
print("last_f1:",last_f1)
print("tmp_f1:",tmp_f1)
for fi in range(len(last_f1)):
if(tmp_f1[fi]>last_f1[fi]):
tmp_out = 1
print("tmp_out:",tmp_out)
if(tmp_out):
notgood_cnt = 0
last_f1 = tmp_f1
tmp_f1_str = [str(round(f1x,4)) for f1x in tmp_f1]
tmp_mae_str = [str(round(mx,4)) for mx in tmp_mae]
maxf1 = '_'.join(tmp_f1_str)
meanM = '_'.join(tmp_mae_str)
# .cpu().detach().numpy()
model_name = "/gpu_itr_"+str(ite_num)+\
"_traLoss_"+str(np.round(running_loss / ite_num4val,4))+\
"_traTarLoss_"+str(np.round(running_tar_loss / ite_num4val,4))+\
"_valLoss_"+str(np.round(val_loss /(i_val+1),4))+\
"_valTarLoss_"+str(np.round(tar_loss /(i_val+1),4)) + \
"_maxF1_" + maxf1 + \
"_mae_" + meanM + \
"_time_" + str(np.round(np.mean(np.array(tmp_time))/batch_size_valid,6))+".pth"
torch.save(net.state_dict(), model_path + model_name)
running_loss = 0.0
running_tar_loss = 0.0
ite_num4val = 0
if(notgood_cnt >= hypar["early_stop"]):
print("No improvements in the last "+str(notgood_cnt)+" validation periods, so training stopped !")
exit()
print("Training Reaches The Maximum Epoch Number")
def valid(net, valid_dataloaders, valid_datasets, hypar, epoch=0):
net.eval()
print("Validating...")
epoch_num = hypar["max_epoch_num"]
val_loss = 0.0
tar_loss = 0.0
val_cnt = 0.0
tmp_f1 = []
tmp_mae = []
tmp_time = []
start_valid = time.time()
for k in range(len(valid_dataloaders)):
valid_dataloader = valid_dataloaders[k]
valid_dataset = valid_datasets[k]
val_num = valid_dataset.__len__()
mybins = np.arange(0,256)
PRE = np.zeros((val_num,len(mybins)-1))
REC = np.zeros((val_num,len(mybins)-1))
F1 = np.zeros((val_num,len(mybins)-1))
MAE = np.zeros((val_num))
for i_val, data_val in enumerate(valid_dataloader):
val_cnt = val_cnt + 1.0
imidx_val, inputs_val, labels_val, shapes_val = data_val['imidx'], data_val['image'], data_val['label'], data_val['shape']
if(hypar["model_digit"]=="full"):
inputs_val = inputs_val.type(torch.FloatTensor)
labels_val = labels_val.type(torch.FloatTensor)
else:
inputs_val = inputs_val.type(torch.HalfTensor)
labels_val = labels_val.type(torch.HalfTensor)
# wrap them in Variable
if torch.cuda.is_available():
inputs_val_v, labels_val_v = Variable(inputs_val.cuda(), requires_grad=False), Variable(labels_val.cuda(), requires_grad=False)
else:
inputs_val_v, labels_val_v = Variable(inputs_val, requires_grad=False), Variable(labels_val,requires_grad=False)
t_start = time.time()
ds_val = net(inputs_val_v)[0]
t_end = time.time()-t_start
tmp_time.append(t_end)
# loss2_val, loss_val = muti_loss_fusion(ds_val, labels_val_v)
loss2_val, loss_val = net.compute_loss(ds_val, labels_val_v)
# compute F measure
for t in range(hypar["batch_size_valid"]):
i_test = imidx_val[t].data.numpy()
pred_val = ds_val[0][t,:,:,:] # B x 1 x H x W
## recover the prediction spatial size to the orignal image size
pred_val = torch.squeeze(F.upsample(torch.unsqueeze(pred_val,0),(shapes_val[t][0],shapes_val[t][1]),mode='bilinear'))
# pred_val = normPRED(pred_val)
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val-mi)/(ma-mi) # max = 1
if len(valid_dataset.dataset["ori_gt_path"]) != 0:
gt = np.squeeze(io.imread(valid_dataset.dataset["ori_gt_path"][i_test])) # max = 255
if gt.max()==1:
gt=gt*255
else:
gt = np.zeros((shapes_val[t][0],shapes_val[t][1]))
with torch.no_grad():
gt = torch.tensor(gt).to(device)
pre,rec,f1,mae = f1_mae_torch(pred_val*255, gt, valid_dataset, i_test, mybins, hypar)
PRE[i_test,:]=pre
REC[i_test,:] = rec
F1[i_test,:] = f1
MAE[i_test] = mae
del ds_val, gt
gc.collect()
torch.cuda.empty_cache()
# if(loss_val.data[0]>1):
val_loss += loss_val.item()#data[0]
tar_loss += loss2_val.item()#data[0]
print("[validating: %5d/%5d] val_ls:%f, tar_ls: %f, f1: %f, mae: %f, time: %f"% (i_val, val_num, val_loss / (i_val + 1), tar_loss / (i_val + 1), np.amax(F1[i_test,:]), MAE[i_test],t_end))
del loss2_val, loss_val
print('============================')
PRE_m = np.mean(PRE,0)
REC_m = np.mean(REC,0)
f1_m = (1+0.3)*PRE_m*REC_m/(0.3*PRE_m+REC_m+1e-8)
tmp_f1.append(np.amax(f1_m))
tmp_mae.append(np.mean(MAE))
return tmp_f1, tmp_mae, val_loss, tar_loss, i_val, tmp_time
def main(train_datasets,
valid_datasets,
hypar): # model: "train", "test"
### --- Step 1: Build datasets and dataloaders ---
dataloaders_train = []
dataloaders_valid = []
if(hypar["mode"]=="train"):
print("--- create training dataloader ---")
## collect training dataset
train_nm_im_gt_list = get_im_gt_name_dict(train_datasets, flag="train")
## build dataloader for training datasets
train_dataloaders, train_datasets = create_dataloaders(train_nm_im_gt_list,
cache_size = hypar["cache_size"],
cache_boost = hypar["cache_boost_train"],
my_transforms = [
GOSRandomHFlip(), ## this line can be uncommented for horizontal flip augmetation
# GOSResize(hypar["input_size"]),
# GOSRandomCrop(hypar["crop_size"]), ## this line can be uncommented for randomcrop augmentation
GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0]),
],
batch_size = hypar["batch_size_train"],
shuffle = True)
train_dataloaders_val, train_datasets_val = create_dataloaders(train_nm_im_gt_list,
cache_size = hypar["cache_size"],
cache_boost = hypar["cache_boost_train"],
my_transforms = [
GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0]),
],
batch_size = hypar["batch_size_valid"],
shuffle = False)
print(len(train_dataloaders), " train dataloaders created")
print("--- create valid dataloader ---")
## build dataloader for validation or testing
valid_nm_im_gt_list = get_im_gt_name_dict(valid_datasets, flag="valid")
## build dataloader for training datasets
valid_dataloaders, valid_datasets = create_dataloaders(valid_nm_im_gt_list,
cache_size = hypar["cache_size"],
cache_boost = hypar["cache_boost_valid"],
my_transforms = [
GOSNormalize([0.5,0.5,0.5],[1.0,1.0,1.0]),
# GOSResize(hypar["input_size"])
],
batch_size=hypar["batch_size_valid"],
shuffle=False)
print(len(valid_dataloaders), " valid dataloaders created")
# print(valid_datasets[0]["data_name"])
### --- Step 2: Build Model and Optimizer ---
print("--- build model ---")
net = hypar["model"]#GOSNETINC(3,1)
# convert to half precision
if(hypar["model_digit"]=="half"):
net.half()
for layer in net.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
if torch.cuda.is_available():
net.cuda()
if(hypar["restore_model"]!=""):
print("restore model from:")
print(hypar["model_path"]+"/"+hypar["restore_model"])
if torch.cuda.is_available():
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"]))
else:
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"],map_location="cpu"))
print("--- define optimizer ---")
optimizer = optim.Adam(net.parameters(), lr=1e-3, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
### --- Step 3: Train or Valid Model ---
if(hypar["mode"]=="train"):
train(net,
optimizer,
train_dataloaders,
train_datasets,
valid_dataloaders,
valid_datasets,
hypar,
train_dataloaders_val, train_datasets_val)
else:
valid(net,
valid_dataloaders,
valid_datasets,
hypar)
if __name__ == "__main__":
### --------------- STEP 1: Configuring the Train, Valid and Test datasets ---------------
## configure the train, valid and inference datasets
train_datasets, valid_datasets = [], []
dataset_1, dataset_1 = {}, {}
dataset_tr = {"name": "DIS5K-TR",
"im_dir": "../DIS5K/DIS-TR/im",
"gt_dir": "../DIS5K/DIS-TR/gt",
"im_ext": ".jpg",
"gt_ext": ".png",
"cache_dir":"../DIS5K-Cache/DIS-TR"}
dataset_vd = {"name": "DIS5K-VD",
"im_dir": "../DIS5K/DIS-VD/im",
"gt_dir": "../DIS5K/DIS-VD/gt",
"im_ext": ".jpg",
"gt_ext": ".png",
"cache_dir":"../DIS5K-Cache/DIS-VD"}
dataset_te1 = {"name": "DIS5K-TE1",
"im_dir": "../DIS5K/DIS-TE1/im",
"gt_dir": "../DIS5K/DIS-TE1/gt",
"im_ext": ".jpg",
"gt_ext": ".png",
"cache_dir":"../DIS5K-Cache/DIS-TE1"}
dataset_te2 = {"name": "DIS5K-TE2",
"im_dir": "../DIS5K/DIS-TE2/im",
"gt_dir": "../DIS5K/DIS-TE2/gt",
"im_ext": ".jpg",
"gt_ext": ".png",
"cache_dir":"../DIS5K-Cache/DIS-TE2"}
dataset_te3 = {"name": "DIS5K-TE3",
"im_dir": "../DIS5K/DIS-TE3/im",
"gt_dir": "../DIS5K/DIS-TE3/gt",
"im_ext": ".jpg",
"gt_ext": ".png",
"cache_dir":"../DIS5K-Cache/DIS-TE3"}
dataset_te4 = {"name": "DIS5K-TE4",
"im_dir": "../DIS5K/DIS-TE4/im",
"gt_dir": "../DIS5K/DIS-TE4/gt",
"im_ext": ".jpg",
"gt_ext": ".png",
"cache_dir":"../DIS5K-Cache/DIS-TE4"}
### test your own dataset
dataset_demo = {"name": "your-dataset",
"im_dir": "../your-dataset/im",
"gt_dir": "",
"im_ext": ".jpg",
"gt_ext": "",
"cache_dir":"../your-dataset/cache"}
train_datasets = [dataset_tr] ## users can create mutiple dictionary for setting a list of datasets as training set
# valid_datasets = [dataset_vd] ## users can create mutiple dictionary for setting a list of datasets as vaidation sets or inference sets
valid_datasets = [dataset_vd] # dataset_vd, dataset_te1, dataset_te2, dataset_te3, dataset_te4] # and hypar["mode"] = "valid" for inference,
### --------------- STEP 2: Configuring the hyperparamters for Training, validation and inferencing ---------------
hypar = {}
## -- 2.1. configure the model saving or restoring path --
hypar["mode"] = "train"
## "train": for training,
## "valid": for validation and inferening,
## in "valid" mode, it will calculate the accuracy as well as save the prediciton results into the "hypar["valid_out_dir"]", which shouldn't be ""
## otherwise only accuracy will be calculated and no predictions will be saved
hypar["interm_sup"] = False ## in-dicate if activate intermediate feature supervision
if hypar["mode"] == "train":
hypar["valid_out_dir"] = "" ## for "train" model leave it as "", for "valid"("inference") mode: set it according to your local directory
hypar["model_path"] ="../saved_models/IS-Net-test" ## model weights saving (or restoring) path
hypar["restore_model"] = "" ## name of the segmentation model weights .pth for resume training process from last stop or for the inferencing
hypar["start_ite"] = 0 ## start iteration for the training, can be changed to match the restored training process
hypar["gt_encoder_model"] = ""
else: ## configure the segmentation output path and the to-be-used model weights path
hypar["valid_out_dir"] = "../your-results/"##"../DIS5K-Results-test" ## output inferenced segmentation maps into this fold
hypar["model_path"] = "../saved_models/IS-Net" ## load trained weights from this path
hypar["restore_model"] = "isnet.pth"##"isnet.pth" ## name of the to-be-loaded weights
# if hypar["restore_model"]!="":
# hypar["start_ite"] = int(hypar["restore_model"].split("_")[2])
## -- 2.2. choose floating point accuracy --
hypar["model_digit"] = "full" ## indicates "half" or "full" accuracy of float number
hypar["seed"] = 0
## -- 2.3. cache data spatial size --
## To handle large size input images, which take a lot of time for loading in training,
# we introduce the cache mechanism for pre-convering and resizing the jpg and png images into .pt file
hypar["cache_size"] = [1024, 1024] ## cached input spatial resolution, can be configured into different size
hypar["cache_boost_train"] = False ## "True" or "False", indicates wheather to load all the training datasets into RAM, True will greatly speed the training process while requires more RAM
hypar["cache_boost_valid"] = False ## "True" or "False", indicates wheather to load all the validation datasets into RAM, True will greatly speed the training process while requires more RAM
## --- 2.4. data augmentation parameters ---
hypar["input_size"] = [1024, 1024] ## mdoel input spatial size, usually use the same value hypar["cache_size"], which means we don't further resize the images
hypar["crop_size"] = [1024, 1024] ## random crop size from the input, it is usually set as smaller than hypar["cache_size"], e.g., [920,920] for data augmentation
hypar["random_flip_h"] = 1 ## horizontal flip, currently hard coded in the dataloader and it is not in use
hypar["random_flip_v"] = 0 ## vertical flip , currently not in use
## --- 2.5. define model ---
print("building model...")
hypar["model"] = ISNetDIS() #U2NETFASTFEATURESUP()
hypar["early_stop"] = 20 ## stop the training when no improvement in the past 20 validation periods, smaller numbers can be used here e.g., 5 or 10.
hypar["model_save_fre"] = 2000 ## valid and save model weights every 2000 iterations
hypar["batch_size_train"] = 8 ## batch size for training
hypar["batch_size_valid"] = 1 ## batch size for validation and inferencing
print("batch size: ", hypar["batch_size_train"])
hypar["max_ite"] = 10000000 ## if early stop couldn't stop the training process, stop it by the max_ite_num
hypar["max_epoch_num"] = 1000000 ## if early stop and max_ite couldn't stop the training process, stop it by the max_epoch_num
main(train_datasets,
valid_datasets,
hypar=hypar) |