metadata
language: vi
datasets:
- cc100
tags:
- summarization
- translation
- question-answering
license: mit
ViT5-base
State-of-the-art pretrained Transformer-based encoder-decoder model for Vietnamese.
How to use
For more details, do check out our Github repo.
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("VietAI/vit5-base")
model = AutoModelForSeq2SeqLM.from_pretrained("VietAI/vit5-base")
sentence = "VietAI là tổ chức phi lợi nhuận với sứ mệnh ươm mầm tài năng về trí tuệ nhân tạo và xây dựng một cộng đồng các chuyên gia trong lĩnh vực trí tuệ nhân tạo đẳng cấp quốc tế tại Việt Nam."
text = "summarize: " + sentence + " </s>"
encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
outputs = model.generate(
input_ids=input_ids, attention_mask=attention_masks,
max_length=256,
early_stopping=True
)
for output in outputs:
line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(line)
Citation
@inproceedings{phan-etal-2022-vit5,
title = "{V}i{T}5: Pretrained Text-to-Text Transformer for {V}ietnamese Language Generation",
author = "Phan, Long and Tran, Hieu and Nguyen, Hieu and Trinh, Trieu H.",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop",
year = "2022",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-srw.18",
pages = "136--142",
}