File size: 2,019 Bytes
9ff36bc 353fa62 9ff36bc 353fa62 9ff36bc 353fa62 9ff36bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: deberta-v3-base-Whatsapp-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-base-Whatsapp-ner
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0559
- Precision: 0.95
- Recall: 0.9661
- F1: 0.9580
- Accuracy: 0.9856
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 59 | 0.1342 | 0.8974 | 0.8898 | 0.8936 | 0.9633 |
| No log | 2.0 | 118 | 0.0559 | 0.95 | 0.9661 | 0.9580 | 0.9856 |
| No log | 3.0 | 177 | 0.0612 | 0.9417 | 0.9576 | 0.9496 | 0.9872 |
| No log | 4.0 | 236 | 0.0605 | 0.9322 | 0.9322 | 0.9322 | 0.9840 |
| No log | 5.0 | 295 | 0.0570 | 0.9496 | 0.9576 | 0.9536 | 0.9888 |
| No log | 6.0 | 354 | 0.0579 | 0.9496 | 0.9576 | 0.9536 | 0.9888 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|