File size: 3,169 Bytes
cd2d0a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---
# bert_key
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
## Usage
To use this model, please install BERTopic:
```
pip install -U bertopic
```
You can use the model as follows:
```python
from bertopic import BERTopic
topic_model = BERTopic.load("VegetaSama/bert_key")
topic_model.get_topic_info()
```
## Topic overview
* Number of topics: 17
* Number of training documents: 10000
<details>
<summary>Click here for an overview of all topics.</summary>
| Topic ID | Topic Keywords | Topic Frequency | Label |
|----------|----------------|-----------------|-------|
| -1 | restaurant - meal - sandwich - food - lunch | 86 | -1_restaurant_meal_sandwich_food |
| 0 | restaurant - drinks - dinner - bar - steak | 2059 | 0_restaurant_drinks_dinner_bar |
| 1 | mexican food - tacos - taco - chips salsa - salsa | 2789 | 1_mexican food_tacos_taco_chips salsa |
| 2 | shop - shopping - nordstrom - store - customer service | 731 | 2_shop_shopping_nordstrom_store |
| 3 | thai food - chinese food - pad thai - thai - fried rice | 701 | 3_thai food_chinese food_pad thai_thai |
| 4 | best pizza - pizza good - good pizza - pizza - pizzeria | 594 | 4_best pizza_pizza good_good pizza_pizza |
| 5 | scottsdale - phoenix - restaurant - bbq - arizona | 586 | 5_scottsdale_phoenix_restaurant_bbq |
| 6 | burger - good burger - burgers - burger fries - restaurant | 443 | 6_burger_good burger_burgers_burger fries |
| 7 | restaurant - hostess - dinner - waiter - waitress | 354 | 7_restaurant_hostess_dinner_waiter |
| 8 | best sushi - sushi - sushi place - sushi bar - spicy tuna | 321 | 8_best sushi_sushi_sushi place_sushi bar |
| 9 | manicure - massage - pedicure - salon - nail | 294 | 9_manicure_massage_pedicure_salon |
| 10 | hotels - hotel - resort - marriott - amenities | 288 | 10_hotels_hotel_resort_marriott |
| 11 | coffee shop - coffee - starbucks - coffee shops - good coffee | 215 | 11_coffee shop_coffee_starbucks_coffee shops |
| 12 | breakfast - pancakes - protein pancakes - bakery - lunch | 211 | 12_breakfast_pancakes_protein pancakes_bakery |
| 13 | hike - hiking - trails - trail - south mountain | 135 | 13_hike_hiking_trails_trail |
| 14 | downtown phoenix - central phoenix - restaurants - phoenix area - phoenix | 105 | 14_downtown phoenix_central phoenix_restaurants_phoenix area |
| 15 | vets - vet - veterinary - pets - petsmart | 88 | 15_vets_vet_veterinary_pets |
</details>
## Training hyperparameters
* calculate_probabilities: True
* language: None
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: None
* seed_topic_list: None
* top_n_words: 5
* verbose: True
* zeroshot_min_similarity: 0.7
* zeroshot_topic_list: None
## Framework versions
* Numpy: 1.24.3
* HDBSCAN: 0.8.33
* UMAP: 0.5.5
* Pandas: 2.0.3
* Scikit-Learn: 1.3.0
* Sentence-transformers: 2.2.2
* Transformers: 4.32.1
* Numba: 0.58.1
* Plotly: 5.9.0
* Python: 3.11.5
|