|
--- |
|
license: mit |
|
base_model: gpt2 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: 50000usd |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# 50000usd |
|
|
|
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 6.5760 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 50 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| No log | 0.8 | 1 | 6.9760 | |
|
| No log | 1.6 | 2 | 6.6552 | |
|
| No log | 2.4 | 3 | 6.5902 | |
|
| No log | 4.0 | 5 | 6.5775 | |
|
| No log | 4.8 | 6 | 6.5818 | |
|
| No log | 5.6 | 7 | 6.5848 | |
|
| No log | 6.4 | 8 | 6.5881 | |
|
| 6.3782 | 8.0 | 10 | 6.5849 | |
|
| 6.3782 | 8.8 | 11 | 6.5811 | |
|
| 6.3782 | 9.6 | 12 | 6.5751 | |
|
| 6.3782 | 10.4 | 13 | 6.5729 | |
|
| 6.3782 | 12.0 | 15 | 6.5785 | |
|
| 6.3782 | 12.8 | 16 | 6.5804 | |
|
| 6.3782 | 13.6 | 17 | 6.5819 | |
|
| 6.3782 | 14.4 | 18 | 6.5836 | |
|
| 6.2143 | 16.0 | 20 | 6.5851 | |
|
| 6.2143 | 16.8 | 21 | 6.5833 | |
|
| 6.2143 | 17.6 | 22 | 6.5813 | |
|
| 6.2143 | 18.4 | 23 | 6.5784 | |
|
| 6.2143 | 20.0 | 25 | 6.5766 | |
|
| 6.2143 | 20.8 | 26 | 6.5764 | |
|
| 6.2143 | 21.6 | 27 | 6.5765 | |
|
| 6.2143 | 22.4 | 28 | 6.5762 | |
|
| 6.2074 | 24.0 | 30 | 6.5763 | |
|
| 6.2074 | 24.8 | 31 | 6.5761 | |
|
| 6.2074 | 25.6 | 32 | 6.5763 | |
|
| 6.2074 | 26.4 | 33 | 6.5757 | |
|
| 6.2074 | 28.0 | 35 | 6.5758 | |
|
| 6.2074 | 28.8 | 36 | 6.5754 | |
|
| 6.2074 | 29.6 | 37 | 6.5760 | |
|
| 6.2074 | 30.4 | 38 | 6.5763 | |
|
| 6.2047 | 32.0 | 40 | 6.5760 | |
|
| 6.2047 | 32.8 | 41 | 6.5764 | |
|
| 6.2047 | 33.6 | 42 | 6.5755 | |
|
| 6.2047 | 34.4 | 43 | 6.5758 | |
|
| 6.2047 | 36.0 | 45 | 6.5759 | |
|
| 6.2047 | 36.8 | 46 | 6.5760 | |
|
| 6.2047 | 37.6 | 47 | 6.5760 | |
|
| 6.2047 | 38.4 | 48 | 6.5761 | |
|
| 6.2026 | 40.0 | 50 | 6.5760 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|