bertNer-biobert / README.md
Vantwoth's picture
bertNer-biobert
10e16a4 verified
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bertNer-biobert
    results: []

bertNer-biobert

This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1284
  • Precision: 0.9471
  • Recall: 0.9630
  • F1: 0.9550
  • Accuracy: 0.9758

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1851 1.0 1224 0.1186 0.9202 0.9550 0.9373 0.9670
0.1188 2.0 2448 0.1061 0.9349 0.9684 0.9514 0.9737
0.0789 3.0 3672 0.1051 0.9381 0.9710 0.9543 0.9755
0.0569 4.0 4896 0.1062 0.9403 0.9712 0.9555 0.9761
0.0492 5.0 6120 0.1174 0.9403 0.9646 0.9523 0.9734
0.0405 6.0 7344 0.1220 0.9426 0.9638 0.9531 0.9739
0.0355 7.0 8568 0.1175 0.9446 0.9651 0.9548 0.9756
0.0296 8.0 9792 0.1239 0.9446 0.9660 0.9552 0.9757
0.0224 9.0 11016 0.1247 0.9474 0.9640 0.9556 0.9760
0.0219 10.0 12240 0.1284 0.9471 0.9630 0.9550 0.9758

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0