File size: 2,759 Bytes
3996bfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
language:
- vi
base_model: vinai/phobert-base
tags:
- generated_from_trainer
model-index:
- name: phobert-base_baseline_syllables
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# phobert-base_baseline_syllables
This model is a fine-tuned version of [vinai/phobert-base](https://huggingface.co/vinai/phobert-base) on the covid19_ner dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0881
- Patient Id: 0.9817
- Name: 0.9476
- Gender: 0.9385
- Age: 0.9684
- Job: 0.7463
- Location: 0.9427
- Organization: 0.8958
- Date: 0.9883
- Symptom And Disease: 0.8849
- Transportation: 0.9943
- F1 Macro: 0.9288
- F1 Micro: 0.9448
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Patient Id | Name | Gender | Age | Job | Location | Organization | Date | Symptom And Disease | Transportation | F1 Macro | F1 Micro |
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:------:|:------:|:------:|:--------:|:------------:|:------:|:-------------------:|:--------------:|:--------:|:--------:|
| 0.3091 | 1.0 | 629 | 0.1389 | 0.9660 | 0.9316 | 0.8391 | 0.9008 | 0.0 | 0.9237 | 0.8249 | 0.9865 | 0.8435 | 0.9444 | 0.8160 | 0.9115 |
| 0.0807 | 2.0 | 1258 | 0.0955 | 0.9809 | 0.9178 | 0.9481 | 0.9707 | 0.4646 | 0.9390 | 0.8704 | 0.9883 | 0.8628 | 0.9831 | 0.8926 | 0.9358 |
| 0.0491 | 3.0 | 1887 | 0.0898 | 0.9828 | 0.9418 | 0.9401 | 0.9671 | 0.6824 | 0.9457 | 0.9007 | 0.9856 | 0.8715 | 0.9886 | 0.9206 | 0.9436 |
| 0.0375 | 4.0 | 2516 | 0.0886 | 0.9817 | 0.9452 | 0.9354 | 0.9644 | 0.7509 | 0.9406 | 0.8887 | 0.9869 | 0.8805 | 0.9943 | 0.9269 | 0.9425 |
| 0.0282 | 5.0 | 3145 | 0.0881 | 0.9817 | 0.9476 | 0.9385 | 0.9684 | 0.7463 | 0.9427 | 0.8958 | 0.9883 | 0.8849 | 0.9943 | 0.9288 | 0.9448 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1
|