|
# 中文预训练Longformer模型 | Longformer_ZH with PyTorch |
|
|
|
相比于Transformer的O(n^2)复杂度,Longformer提供了一种以线性复杂度处理最长4K字符级别文档序列的方法。Longformer Attention包括了标准的自注意力与全局注意力机制,方便模型更好地学习超长序列的信息。 |
|
|
|
Compared with O(n^2) complexity for Transformer model, Longformer provides an efficient method for processing long-document level sequence in Linear complexity. Longformer’s attention mechanism is a drop-in replacement for the standard self-attention and combines a local windowed attention with a task motivated global attention. |
|
|
|
我们注意到关于中文Longformer或超长序列任务的资源较少,因此在此开源了我们预训练的中文Longformer模型参数, 并提供了相应的加载方法,以及预训练脚本。 |
|
|
|
There are not so much resource for Chinese Longformer or long-sequence-level chinese task. Thus we open source our pretrained longformer model to help the researchers. |
|
## 加载模型 | Load the model |
|
您可以使用谷歌云盘或百度网盘下载我们的模型 |
|
You could get Longformer_zh from Google Drive or Baidu Yun. |
|
|
|
- Google Drive: https://drive.google.com/file/d/1IDJ4aVTfSFUQLIqCYBtoRpnfbgHPoxB4/view?usp=sharing |
|
- 百度云: 链接:https://pan.baidu.com/s/1HaVDENx52I7ryPFpnQmq1w 提取码:y601 |
|
|
|
我们同样提供了Huggingface的自动下载 |
|
We also provide auto load with HuggingFace.Transformers. |
|
``` |
|
from Longformer_zh import LongformerZhForMaksedLM |
|
LongformerZhForMaksedLM.from_pretrained('ValkyriaLenneth/longformer_zh') |
|
``` |
|
|
|
## 注意事项 | Notice |
|
- 直接使用 `transformers.LongformerModel.from_pretrained` 加载模型 |
|
- Please use `transformers.LongformerModel.from_pretrained` to load the model directly |
|
|
|
- 以下内容已经被弃用 |
|
- The following notices are abondoned, please ignore them. |
|
- 区别于英文原版Longformer, 中文Longformer的基础是Roberta_zh模型,其本质上属于 `Transformers.BertModel` 而非 `RobertaModel`, 因此无法使用原版代码直接加载。 |
|
- Different with origin English Longformer, Longformer_Zh is based on Roberta_zh which is a subclass of `Transformers.BertModel` not `RobertaModel`. Thus it is impossible to load it with origin code. |
|
- 我们提供了修改后的中文Longformer文件,您可以使用其加载参数。 |
|
- We provide modified Longformer_zh class, you can use it directly to load the model. |
|
- 如果您想将此参数用于更多任务,请参考`Longformer_zh.py`替换Attention Layer. |
|
- If you want to use our model on more down-stream tasks, please refer to `Longformer_zh.py` and replace Attention layer with Longformer Attention layer. |
|
|
|
## 关于预训练 | About Pretraining |
|
- 我们的预训练语料来自 https://github.com/brightmart/nlp_chinese_corpus, 根据Longformer原文的设置,采用了多种语料混合的预训练数据。 |
|
- The corpus of pretraining is from https://github.com/brightmart/nlp_chinese_corpus. Based on the paper of Longformer, we use a mixture of 4 different chinese corpus for pretraining. |
|
- 我们的模型是基于Roberta_zh_mid (https://github.com/brightmart/roberta_zh),训练脚本参考了https://github.com/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb |
|
- The basement of our model is Roberta_zh_mid (https://github.com/brightmart/roberta_zh). Pretraining scripts is modified from https://github.com/allenai/longformer/blob/master/scripts/convert_model_to_long.ipynb. |
|
|
|
- 同时我们在原版基础上,引入了 `Whole-Word-Masking` 机制,以便更好地适应中文特性。 |
|
- We introduce `Whole-Word-Masking` method into pretraining for better fitting Chinese language. |
|
- `Whole-Word-Masking`代码改写自TensorFlow版本的Roberta_zh,据我们所知是第一个开源的Pytorch版本WWM. |
|
- Our WWM scripts is refacted from Roberta_zh_Tensorflow, as far as we know, it is the first open source Whole-word-masking scripts in Pytorch. |
|
|
|
- 模型 `max_seq_length = 4096`, 在 4 * Titan RTX 上预训练3K steps 大概用时4天。 |
|
- Max seuence length is 4096 and the pretraining took 4 days on 4 * Titan RTX. |
|
- 我们使用了 `Nvidia.Apex` 引入了混合精度训练,以加速预训练。 |
|
- We use `Nvidia.Apex` to accelerate pretraining. |
|
- 关于数据预处理, 我们采用 `Jieba` 分词与`JIONLP`进行数据清洗。 |
|
- We use `Jieba` Chinese tokenizer and `JIONLP` data cleaning. |
|
- 更多细节可以参考我们的预训练脚本 |
|
- For more details, please check our pretraining scripts. |
|
|
|
|
|
## 效果测试 | Evaluation |
|
### CCF Sentiment Analysis |
|
- 由于中文超长文本级别任务稀缺,我们采用了CCF-Sentiment-Analysis任务进行测试 |
|
- Since it is hard to acquire open-sourced long sequence level chinese NLP task, we use CCF-Sentiment-Analysis for evaluation. |
|
|
|
|Model|Dev F| |
|
|----|----| |
|
|Bert|80.3| |
|
|Bert-wwm-ext| 80.5| |
|
|Roberta-mid|80.5| |
|
|Roberta-large|81.25| |
|
|Longformer_SC|79.37| |
|
|Longformer_ZH|80.51| |
|
|
|
### Pretraining BPC |
|
- 我们提供了预训练BPC(bits-per-character), BPC越小,代表语言模型性能更优。可视作PPL. |
|
- We also provide BPC scores of pretraining, the lower BPC score, the better performance Langugage Model has. You can also treat it as PPL. |
|
|
|
|Model|BPC| |
|
|---|---| |
|
|Longformer before training| 14.78| |
|
|Longformer after training| 3.10| |
|
|
|
### CMRC(Chinese Machine Reading Comprehension) |
|
|Model|F1|EM| |
|
|---|---|---| |
|
|Bert|85.87|64.90| |
|
|Roberta|86.45|66.57| |
|
|Longformer_zh|86.15|66.84| |
|
|
|
### Chinese Coreference Resolution |
|
|Model|Conll-F1|Precision|Recall| |
|
|---|---|---|---| |
|
|Bert|66.82|70.30|63.67| |
|
|Roberta|67.77|69.28|66.32| |
|
|Longformer_zh|67.81|70.13|65.64| |
|
|
|
|
|
|
|
## 致谢 |
|
感谢东京工业大学 奥村·船越研究室 提供算力。 |
|
|
|
Thanks Okumula·Funakoshi Lab from Tokyo Institute of Technology who provides the devices and oppotunity for me to finish this project. |
|
|
|
|
|
|