File size: 11,111 Bytes
92cd965
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
##################
# Stable Diffusion Dynamic Thresholding (CFG Scale Fix)
#
# Author: Alex 'mcmonkey' Goodwin
# GitHub URL: https://github.com/mcmonkeyprojects/sd-dynamic-thresholding
# Created: 2022/01/26
# Last updated: 2023/01/30
#
# For usage help, view the README.md file in the extension root, or via the GitHub page.
#
##################

import gradio as gr
import torch, traceback
import dynthres_core
from modules import scripts, script_callbacks, sd_samplers, sd_samplers_compvis, sd_samplers_kdiffusion, sd_samplers_common
try:
    import dynthres_unipc
except Exception as e:
    print(f"\n\n======\nError! UniPC sampler support failed to load! Is your WebUI up to date?\n(Error: {e})\n======")

######################### Data values #########################
VALID_MODES = ["Constant", "Linear Down", "Cosine Down", "Half Cosine Down", "Linear Up", "Cosine Up", "Half Cosine Up", "Power Up", "Power Down"]

######################### Script class entrypoint #########################
class Script(scripts.Script):

    def title(self):
        return "Dynamic Thresholding (CFG Scale Fix)"

    def show(self, is_img2img):
        return scripts.AlwaysVisible

    def ui(self, is_img2img):
        enabled = gr.Checkbox(value=False, label="Enable Dynamic Thresholding (CFG Scale Fix)")
        # "Dynamic Thresholding (CFG Scale Fix)"
        accordion = gr.Group(visible=False)
        with accordion:
            gr.HTML(value=f"<br>View <a style=\"border-bottom: 1px #00ffff dotted;\" href=\"https://github.com/mcmonkeyprojects/sd-dynamic-thresholding/wiki/Usage-Tips\">the wiki for usage tips.</a><br><br>")
            mimic_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='Mimic CFG Scale', value=7.0)
            with gr.Accordion("Dynamic Thresholding Advanced Options", open=False):
                threshold_percentile = gr.Slider(minimum=90.0, value=100.0, maximum=100.0, step=0.05, label='Top percentile of latents to clamp')
                mimic_mode = gr.Dropdown(VALID_MODES, value="Constant", label="Mimic Scale Scheduler")
                mimic_scale_min = gr.Slider(minimum=0.0, maximum=30.0, step=0.5, label="Minimum value of the Mimic Scale Scheduler")
                cfg_mode = gr.Dropdown(VALID_MODES, value="Constant", label="CFG Scale Scheduler")
                cfg_scale_min = gr.Slider(minimum=0.0, maximum=30.0, step=0.5, label="Minimum value of the CFG Scale Scheduler")
                power_val = gr.Slider(minimum=0.0, maximum=15.0, step=0.5, value=4.0, visible=False, label="Power Scheduler Value")
        def shouldShowPowerScheduler(cfgMode, mimicMode):
            if cfgMode in ["Power Up", "Power Down"] or mimicMode in ["Power Up", "Power Down"]:
                return {"visible": True, "__type__": "update"}
            return {"visible": False, "__type__": "update"}
        cfg_mode.change(shouldShowPowerScheduler, inputs=[cfg_mode, mimic_mode], outputs=power_val)
        mimic_mode.change(shouldShowPowerScheduler, inputs=[cfg_mode, mimic_mode], outputs=power_val)
        enabled.change(
            fn=lambda x: {"visible": x, "__type__": "update"},
            inputs=[enabled],
            outputs=[accordion],
            show_progress = False)
        self.infotext_fields = (
            (enabled, lambda d: gr.Checkbox.update(value="Dynamic thresholding enabled" in d)),
            (accordion, lambda d: gr.Accordion.update(visible="Dynamic thresholding enabled" in d)),
            (mimic_scale, "Mimic scale"),
            (threshold_percentile, "Threshold percentile"),
            (mimic_scale_min, "Mimic scale minimum"),
            (mimic_mode, lambda d: gr.Dropdown.update(value=d.get("Mimic mode", "Constant"))),
            (cfg_mode, lambda d: gr.Dropdown.update(value=d.get("CFG mode", "Constant"))),
            (cfg_scale_min, "CFG scale minimum"),
            (power_val, "Power scheduler value"))
        return [enabled, mimic_scale, threshold_percentile, mimic_mode, mimic_scale_min, cfg_mode, cfg_scale_min, power_val]

    last_id = 0

    def process_batch(self, p, enabled, mimic_scale, threshold_percentile, mimic_mode, mimic_scale_min, cfg_mode, cfg_scale_min, powerscale_power, batch_number, prompts, seeds, subseeds):
        enabled = getattr(p, 'dynthres_enabled', enabled)
        if not enabled:
            return
        orig_sampler_name = p.sampler_name
        if orig_sampler_name in ["DDIM", "PLMS"]:
            raise RuntimeError(f"Cannot use sampler {orig_sampler_name} with Dynamic Thresholding")
        if orig_sampler_name == 'UniPC' and p.enable_hr:
            raise RuntimeError(f"UniPC does not support Hires Fix. Auto WebUI silently swaps to DDIM for this, which DynThresh does not support. Please swap to a sampler capable of img2img processing for HR Fix to work.")
        mimic_scale = getattr(p, 'dynthres_mimic_scale', mimic_scale)
        threshold_percentile = getattr(p, 'dynthres_threshold_percentile', threshold_percentile)
        mimic_mode = getattr(p, 'dynthres_mimic_mode', mimic_mode)
        mimic_scale_min = getattr(p, 'dynthres_mimic_scale_min', mimic_scale_min)
        cfg_mode = getattr(p, 'dynthres_cfg_mode', cfg_mode)
        cfg_scale_min = getattr(p, 'dynthres_cfg_scale_min', cfg_scale_min)
        experiment_mode = getattr(p, 'dynthres_experiment_mode', 0)
        power_val = getattr(p, 'dynthres_power_val', powerscale_power)
        p.extra_generation_params["Dynamic thresholding enabled"] = True
        p.extra_generation_params["Mimic scale"] = mimic_scale
        p.extra_generation_params["Threshold percentile"] = threshold_percentile
        p.extra_generation_params["Sampler"] = orig_sampler_name
        if mimic_mode != "Constant":
            p.extra_generation_params["Mimic mode"] = mimic_mode
            p.extra_generation_params["Mimic scale minimum"] = mimic_scale_min
        if cfg_mode != "Constant":
            p.extra_generation_params["CFG mode"] = cfg_mode
            p.extra_generation_params["CFG scale minimum"] = cfg_scale_min
        if cfg_mode in ["Power Up", "Power Down"] or mimic_mode in ["Power Up", "Power Down"]:
            p.extra_generation_params["Power scheduler value"] = power_val
        # Note: the ID number is to protect the edge case of multiple simultaneous runs with different settings
        Script.last_id += 1
        fixed_sampler_name = f"{orig_sampler_name}_dynthres{Script.last_id}"
        # Percentage to portion
        threshold_percentile *= 0.01
        # Make a placeholder sampler
        sampler = sd_samplers.all_samplers_map[orig_sampler_name]
        dtData = dynthres_core.DynThresh(mimic_scale, threshold_percentile, mimic_mode, mimic_scale_min, cfg_mode, cfg_scale_min, power_val, experiment_mode, p.steps)
        if orig_sampler_name == "UniPC":
            def uniPCConstructor(model):
                return CustomVanillaSDSampler(dynthres_unipc.CustomUniPCSampler, model, dtData)
            newSampler = sd_samplers_common.SamplerData(fixed_sampler_name, uniPCConstructor, sampler.aliases, sampler.options)
        else:
            def newConstructor(model):
                result = sampler.constructor(model)
                cfg = CustomCFGDenoiser(result.model_wrap_cfg.inner_model, dtData)
                result.model_wrap_cfg = cfg
                return result
            newSampler = sd_samplers_common.SamplerData(fixed_sampler_name, newConstructor, sampler.aliases, sampler.options)
        # Apply for usage
        p.orig_sampler_name = orig_sampler_name
        p.sampler_name = fixed_sampler_name
        p.fixed_sampler_name = fixed_sampler_name
        sd_samplers.all_samplers_map[fixed_sampler_name] = newSampler
        if p.sampler is not None:
            p.sampler = sd_samplers.create_sampler(fixed_sampler_name, p.sd_model)

    def postprocess_batch(self, p, enabled, mimic_scale, threshold_percentile, mimic_mode, mimic_scale_min, cfg_mode, cfg_scale_min, powerscale_power, batch_number, images):
        if not enabled or not hasattr(p, 'orig_sampler_name'):
            return
        p.sampler_name = p.orig_sampler_name
        del sd_samplers.all_samplers_map[p.fixed_sampler_name]
        del p.orig_sampler_name
        del p.fixed_sampler_name

######################### CompVis Implementation logic #########################

class CustomVanillaSDSampler(sd_samplers_compvis.VanillaStableDiffusionSampler):
    def __init__(self, constructor, sd_model, dtData):
        super().__init__(constructor, sd_model)
        self.sampler.main_class = dtData

######################### K-Diffusion Implementation logic #########################

class CustomCFGDenoiser(sd_samplers_kdiffusion.CFGDenoiser):
    def __init__(self, model, dtData):
        super().__init__(model)
        self.main_class = dtData

    def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
        denoised_uncond = x_out[-uncond.shape[0]:]
        # conds_list shape is (batch, cond, 2)
        weights = torch.tensor(conds_list, device=uncond.device).select(2, 1)
        weights = weights.reshape(*weights.shape, 1, 1, 1)
        self.main_class.step = self.step
        return self.main_class.dynthresh(x_out[:-uncond.shape[0]], denoised_uncond, cond_scale, weights)

######################### XYZ Plot Script Support logic #########################

def make_axis_options():
    xyz_grid = [x for x in scripts.scripts_data if x.script_class.__module__ == "xyz_grid.py"][0].module
    def apply_mimic_scale(p, x, xs):
        if x != 0:
            setattr(p, "dynthres_enabled", True)
            setattr(p, "dynthres_mimic_scale", x)
        else:
            setattr(p, "dynthres_enabled", False)
    def confirm_scheduler(p, xs):
        for x in xs:
            if x not in VALID_MODES:
                raise RuntimeError(f"Unknown Scheduler: {x}")
    extra_axis_options = [
        xyz_grid.AxisOption("[DynThres] Mimic Scale", float, apply_mimic_scale),
        xyz_grid.AxisOption("[DynThres] Threshold Percentile", float, xyz_grid.apply_field("dynthres_threshold_percentile")),
        xyz_grid.AxisOption("[DynThres] Mimic Scheduler", str, xyz_grid.apply_field("dynthres_mimic_mode"), confirm=confirm_scheduler, choices=lambda: VALID_MODES),
        xyz_grid.AxisOption("[DynThres] Mimic minimum", float, xyz_grid.apply_field("dynthres_mimic_scale_min")),
        xyz_grid.AxisOption("[DynThres] CFG Scheduler", str, xyz_grid.apply_field("dynthres_cfg_mode"), confirm=confirm_scheduler, choices=lambda: VALID_MODES),
        xyz_grid.AxisOption("[DynThres] CFG minimum", float, xyz_grid.apply_field("dynthres_cfg_scale_min")),
        xyz_grid.AxisOption("[DynThres] Power scheduler value", float, xyz_grid.apply_field("dynthres_power_val"))
    ]
    if not any("[DynThres]" in x.label for x in xyz_grid.axis_options):
        xyz_grid.axis_options.extend(extra_axis_options)

def callbackBeforeUi():
    try:
        make_axis_options()
    except Exception as e:
        traceback.print_exc()
        print(f"Failed to add support for X/Y/Z Plot Script because: {e}")

script_callbacks.on_before_ui(callbackBeforeUi)