|
--- |
|
base_model: VK246/IC_ver6N_coco_swin_gpt2_50B_1e |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- coco |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: IC_ver6O_coco_swin_gpt2_50A_1e |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# IC_ver6O_coco_swin_gpt2_50A_1e |
|
|
|
This model is a fine-tuned version of [VK246/IC_ver6N_coco_swin_gpt2_50B_1e](https://huggingface.co/VK246/IC_ver6N_coco_swin_gpt2_50B_1e) on the coco dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8849 |
|
- Cider: 72.4854 |
|
- Rouge1: 40.7439 |
|
- Rouge2: 15.2616 |
|
- Rougel: 36.9501 |
|
- Rougelsum: 36.949 |
|
- Bleu-1: 41.8372 |
|
- Bleu-2: 23.7109 |
|
- Bleu-3: 14.6914 |
|
- Bleu-4: 9.6127 |
|
- Gen Len: 11.2806 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 96 |
|
- eval_batch_size: 96 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Cider | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu-1 | Bleu-2 | Bleu-3 | Bleu-4 | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:|:-------:|:-------:|:-------:|:------:|:-------:| |
|
| 0.3364 | 0.34 | 1000 | 1.0724 | 68.111 | 39.6376 | 14.2539 | 35.915 | 35.9088 | 40.8738 | 22.7246 | 13.9284 | 8.9769 | 11.2806 | |
|
| 0.4722 | 0.68 | 2000 | 0.8849 | 72.4854 | 40.7439 | 15.2616 | 36.9501 | 36.949 | 41.8372 | 23.7109 | 14.6914 | 9.6127 | 11.2806 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|