metadata
base_model: VK246/IC_ver6N_coco_swin_gpt2_50B_1e
tags:
- generated_from_trainer
datasets:
- coco
metrics:
- rouge
model-index:
- name: IC_ver6O_coco_swin_gpt2_50A_1e
results: []
IC_ver6O_coco_swin_gpt2_50A_1e
This model is a fine-tuned version of VK246/IC_ver6N_coco_swin_gpt2_50B_1e on the coco dataset. It achieves the following results on the evaluation set:
- Loss: 0.8849
- Cider: 72.4854
- Rouge1: 40.7439
- Rouge2: 15.2616
- Rougel: 36.9501
- Rougelsum: 36.949
- Bleu-1: 41.8372
- Bleu-2: 23.7109
- Bleu-3: 14.6914
- Bleu-4: 9.6127
- Gen Len: 11.2806
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 96
- eval_batch_size: 96
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Cider | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu-1 | Bleu-2 | Bleu-3 | Bleu-4 | Gen Len |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.3364 | 0.34 | 1000 | 1.0724 | 68.111 | 39.6376 | 14.2539 | 35.915 | 35.9088 | 40.8738 | 22.7246 | 13.9284 | 8.9769 | 11.2806 |
0.4722 | 0.68 | 2000 | 0.8849 | 72.4854 | 40.7439 | 15.2616 | 36.9501 | 36.949 | 41.8372 | 23.7109 | 14.6914 | 9.6127 | 11.2806 |
Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3