File size: 2,017 Bytes
73fe9a2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
base_model: VK246/IC_ver6N_coco_swin_gpt2_50B_1e
tags:
- generated_from_trainer
datasets:
- coco
metrics:
- rouge
model-index:
- name: IC_ver6O_coco_swin_gpt2_50A_1e
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# IC_ver6O_coco_swin_gpt2_50A_1e
This model is a fine-tuned version of [VK246/IC_ver6N_coco_swin_gpt2_50B_1e](https://huggingface.co/VK246/IC_ver6N_coco_swin_gpt2_50B_1e) on the coco dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8849
- Cider: 72.4854
- Rouge1: 40.7439
- Rouge2: 15.2616
- Rougel: 36.9501
- Rougelsum: 36.949
- Bleu-1: 41.8372
- Bleu-2: 23.7109
- Bleu-3: 14.6914
- Bleu-4: 9.6127
- Gen Len: 11.2806
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 96
- eval_batch_size: 96
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cider | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu-1 | Bleu-2 | Bleu-3 | Bleu-4 | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:|:-------:|:-------:|:-------:|:------:|:-------:|
| 0.3364 | 0.34 | 1000 | 1.0724 | 68.111 | 39.6376 | 14.2539 | 35.915 | 35.9088 | 40.8738 | 22.7246 | 13.9284 | 8.9769 | 11.2806 |
| 0.4722 | 0.68 | 2000 | 0.8849 | 72.4854 | 40.7439 | 15.2616 | 36.9501 | 36.949 | 41.8372 | 23.7109 | 14.6914 | 9.6127 | 11.2806 |
### Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|