|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- coco |
|
metrics: |
|
- rouge |
|
- bleu |
|
model-index: |
|
- name: IC_ver3b_coco_swin_gpt2_2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# IC_ver3b_coco_swin_gpt2_2 |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on the coco dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.8483 |
|
- Rouge1: 41.3447 |
|
- Rouge2: 15.7294 |
|
- Rougel: 37.6633 |
|
- Rougelsum: 37.6744 |
|
- Bleu: 9.4309 |
|
- Gen Len: 11.3368 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 96 |
|
- eval_batch_size: 96 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:------:|:-------:| |
|
| 1.2141 | 0.25 | 300 | 1.0093 | 35.2179 | 11.1228 | 32.1546 | 32.167 | 6.2018 | 11.3368 | |
|
| 1.0037 | 0.51 | 600 | 0.9600 | 36.4586 | 11.8379 | 33.324 | 33.3342 | 7.0081 | 11.3368 | |
|
| 0.9644 | 0.76 | 900 | 0.9303 | 38.5343 | 13.2266 | 35.2902 | 35.3055 | 7.539 | 11.3368 | |
|
| 0.9367 | 1.02 | 1200 | 0.9004 | 39.2182 | 13.7589 | 35.7747 | 35.7799 | 7.6492 | 11.3368 | |
|
| 0.8842 | 1.27 | 1500 | 0.8876 | 39.4537 | 14.1037 | 35.9758 | 35.9776 | 8.4067 | 11.3368 | |
|
| 0.86 | 1.53 | 1800 | 0.8758 | 40.4179 | 15.0774 | 37.0166 | 37.0401 | 8.8897 | 11.3368 | |
|
| 0.8465 | 1.78 | 2100 | 0.8665 | 40.4073 | 15.1125 | 36.9767 | 36.9877 | 8.9602 | 11.3368 | |
|
| 0.8421 | 2.04 | 2400 | 0.8592 | 40.62 | 15.2042 | 36.9224 | 36.9359 | 9.1313 | 11.3368 | |
|
| 0.8106 | 2.29 | 2700 | 0.8548 | 41.0356 | 15.399 | 37.4562 | 37.4635 | 9.2534 | 11.3368 | |
|
| 0.7963 | 2.54 | 3000 | 0.8521 | 41.1998 | 15.6442 | 37.6659 | 37.6682 | 9.4605 | 11.3368 | |
|
| 0.795 | 2.8 | 3300 | 0.8493 | 41.1215 | 15.581 | 37.4725 | 37.4978 | 9.5488 | 11.3368 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.30.2 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|