File size: 2,669 Bytes
87665ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
tags:
- generated_from_trainer
datasets:
- coco
metrics:
- rouge
- bleu
model-index:
- name: IC_ver3b_coco_swin_gpt2_2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# IC_ver3b_coco_swin_gpt2_2

This model is a fine-tuned version of [](https://huggingface.co/) on the coco dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8483
- Rouge1: 41.3447
- Rouge2: 15.7294
- Rougel: 37.6633
- Rougelsum: 37.6744
- Bleu: 9.4309
- Gen Len: 11.3368

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 96
- eval_batch_size: 96
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Bleu   | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:------:|:-------:|
| 1.2141        | 0.25  | 300  | 1.0093          | 35.2179 | 11.1228 | 32.1546 | 32.167    | 6.2018 | 11.3368 |
| 1.0037        | 0.51  | 600  | 0.9600          | 36.4586 | 11.8379 | 33.324  | 33.3342   | 7.0081 | 11.3368 |
| 0.9644        | 0.76  | 900  | 0.9303          | 38.5343 | 13.2266 | 35.2902 | 35.3055   | 7.539  | 11.3368 |
| 0.9367        | 1.02  | 1200 | 0.9004          | 39.2182 | 13.7589 | 35.7747 | 35.7799   | 7.6492 | 11.3368 |
| 0.8842        | 1.27  | 1500 | 0.8876          | 39.4537 | 14.1037 | 35.9758 | 35.9776   | 8.4067 | 11.3368 |
| 0.86          | 1.53  | 1800 | 0.8758          | 40.4179 | 15.0774 | 37.0166 | 37.0401   | 8.8897 | 11.3368 |
| 0.8465        | 1.78  | 2100 | 0.8665          | 40.4073 | 15.1125 | 36.9767 | 36.9877   | 8.9602 | 11.3368 |
| 0.8421        | 2.04  | 2400 | 0.8592          | 40.62   | 15.2042 | 36.9224 | 36.9359   | 9.1313 | 11.3368 |
| 0.8106        | 2.29  | 2700 | 0.8548          | 41.0356 | 15.399  | 37.4562 | 37.4635   | 9.2534 | 11.3368 |
| 0.7963        | 2.54  | 3000 | 0.8521          | 41.1998 | 15.6442 | 37.6659 | 37.6682   | 9.4605 | 11.3368 |
| 0.795         | 2.8   | 3300 | 0.8493          | 41.1215 | 15.581  | 37.4725 | 37.4978   | 9.5488 | 11.3368 |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3