|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: vit-large-patch32-384-finetuned-melanoma |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8272727272727273 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vit-large-patch32-384-finetuned-melanoma |
|
|
|
This model is a fine-tuned version of [google/vit-large-patch32-384](https://huggingface.co/google/vit-large-patch32-384) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.0767 |
|
- Accuracy: 0.8273 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 4 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 40 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 1.0081 | 1.0 | 550 | 0.7650 | 0.68 | |
|
| 0.7527 | 2.0 | 1100 | 0.6693 | 0.7364 | |
|
| 0.6234 | 3.0 | 1650 | 0.6127 | 0.7709 | |
|
| 2.6284 | 4.0 | 2200 | 0.6788 | 0.7655 | |
|
| 0.1406 | 5.0 | 2750 | 0.6657 | 0.7836 | |
|
| 0.317 | 6.0 | 3300 | 0.6936 | 0.78 | |
|
| 2.5358 | 7.0 | 3850 | 0.7104 | 0.7909 | |
|
| 1.5802 | 8.0 | 4400 | 0.6928 | 0.8 | |
|
| 0.088 | 9.0 | 4950 | 0.8060 | 0.7982 | |
|
| 0.0183 | 10.0 | 5500 | 0.7811 | 0.8091 | |
|
| 0.0074 | 11.0 | 6050 | 0.7185 | 0.7945 | |
|
| 0.0448 | 12.0 | 6600 | 0.8780 | 0.7909 | |
|
| 0.4288 | 13.0 | 7150 | 0.8229 | 0.82 | |
|
| 0.017 | 14.0 | 7700 | 0.7516 | 0.8182 | |
|
| 0.0057 | 15.0 | 8250 | 0.7974 | 0.7964 | |
|
| 1.7571 | 16.0 | 8800 | 0.7866 | 0.8218 | |
|
| 1.3159 | 17.0 | 9350 | 0.8491 | 0.8073 | |
|
| 1.649 | 18.0 | 9900 | 0.8432 | 0.7891 | |
|
| 0.0014 | 19.0 | 10450 | 0.8870 | 0.82 | |
|
| 0.002 | 20.0 | 11000 | 0.9460 | 0.8236 | |
|
| 0.3717 | 21.0 | 11550 | 0.8866 | 0.8327 | |
|
| 0.0025 | 22.0 | 12100 | 1.0287 | 0.8073 | |
|
| 0.0094 | 23.0 | 12650 | 0.9696 | 0.8091 | |
|
| 0.002 | 24.0 | 13200 | 0.9659 | 0.8018 | |
|
| 0.1001 | 25.0 | 13750 | 0.9712 | 0.8327 | |
|
| 0.2953 | 26.0 | 14300 | 1.0512 | 0.8236 | |
|
| 0.0141 | 27.0 | 14850 | 1.0503 | 0.82 | |
|
| 0.612 | 28.0 | 15400 | 1.2020 | 0.8109 | |
|
| 0.0792 | 29.0 | 15950 | 1.0498 | 0.8364 | |
|
| 0.0117 | 30.0 | 16500 | 1.0079 | 0.8327 | |
|
| 0.0568 | 31.0 | 17050 | 1.0199 | 0.8255 | |
|
| 0.0001 | 32.0 | 17600 | 1.0319 | 0.8291 | |
|
| 0.075 | 33.0 | 18150 | 1.0427 | 0.8382 | |
|
| 0.001 | 34.0 | 18700 | 1.1289 | 0.8382 | |
|
| 0.0001 | 35.0 | 19250 | 1.0589 | 0.8364 | |
|
| 0.0006 | 36.0 | 19800 | 1.0349 | 0.8236 | |
|
| 0.0023 | 37.0 | 20350 | 1.1192 | 0.8273 | |
|
| 0.0002 | 38.0 | 20900 | 1.0863 | 0.8273 | |
|
| 0.2031 | 39.0 | 21450 | 1.0604 | 0.8255 | |
|
| 0.0006 | 40.0 | 22000 | 1.0767 | 0.8273 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.24.0 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.7.0 |
|
- Tokenizers 0.13.2 |
|
|