metadata
license: cc-by-nc-4.0
tags:
- not-for-all-audiences
- nsfw
First :
layer_slices:
- model: Undi95/MLewd-L2-Chat-13B
start: 0
end: 16
- model: Undi95/MLewd-ReMM-L2-Chat-20B-Part1
start: 8
end: 20
- model: Undi95/MLewd-L2-Chat-13B
start: 17
end: 32
- model: Undi95/MLewd-ReMM-L2-Chat-20B-Part1
start: 21
end: 40
Inverted:
layer_slices:
- model: Undi95/MLewd-ReMM-L2-Chat-20B-Part1
start: 0
end: 16
- model: Undi95/MLewd-L2-Chat-13B
start: 8
end: 20
- model: Undi95/MLewd-ReMM-L2-Chat-20B-Part1
start: 17
end: 32
- model: Undi95/MLewd-L2-Chat-13B
start: 21
end: 40
Precise:
layer_slices:
- model: Undi95/MLewd-L2-Chat-13B
start: 0
end: 8
- model: Undi95/MLewd-ReMM-L2-Chat-20B-Part1
start: 4
end: 12
- model: Undi95/MLewd-L2-Chat-13B
start: 9
end: 16
- model: Undi95/MLewd-ReMM-L2-Chat-20B-Part1
start: 13
end: 22
- model: Undi95/MLewd-L2-Chat-13B
start: 17
end: 24
- model: Undi95/MLewd-ReMM-L2-Chat-20B-Part1
start: 23
end: 32
- model: Undi95/MLewd-L2-Chat-13B
start: 25
end: 32
- model: Undi95/MLewd-ReMM-L2-Chat-20B-Part1
start: 33
end: 40
PreciseInverted:
layer_slices:
- model: Undi95/MLewd-ReMM-L2-Chat-20B-Part1
start: 0
end: 8
- model: Undi95/MLewd-L2-Chat-13B
start: 4
end: 12
- model: Undi95/MLewd-ReMM-L2-Chat-20B-Part1
start: 9
end: 16
- model: Undi95/MLewd-L2-Chat-13B
start: 13
end: 22
- model: Undi95/MLewd-ReMM-L2-Chat-20B-Part1
start: 17
end: 24
- model: Undi95/MLewd-L2-Chat-13B
start: 23
end: 32
- model: Undi95/MLewd-ReMM-L2-Chat-20B-Part1
start: 25
end: 32
- model: Undi95/MLewd-L2-Chat-13B
start: 33
end: 40
Part1 = ReMM v2.1 merged /w MLewd low weight to keep consistency. I call this "dilution" and result show consistency and coherency without repeat/loop beside the small amount of duplicated datas.
The goal is to find the best way to interlace layers the best way possible to have a sweetspot between 13B and +30B.
Normal/Inverted is by chunk of 16 layers and Precise/PreciseInverted is by chunk of 8 layers.
All the models are made of 64(+1) layers. Need testing.
Prompt template: Alpaca
Below is an instruction that describes a task. Write a response that completes the request.
### Instruction:
{prompt}
### Response:
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 50.81 |
ARC (25-shot) | 61.69 |
HellaSwag (10-shot) | 85.32 |
MMLU (5-shot) | 58.0 |
TruthfulQA (0-shot) | 53.77 |
Winogrande (5-shot) | 75.61 |
GSM8K (5-shot) | 9.1 |
DROP (3-shot) | 12.16 |