|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- timdettmers/openassistant-guanaco |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
--- |
|
## Anacondia |
|
Anacondia-70m is a Pythia-70m-deduped model fine-tuned with QLoRA on [timdettmers/openassistant-guanaco](https://huggingface.co/datasets/timdettmers/openassistant-guanaco) |
|
|
|
## Usage |
|
Anacondia is not intended for any downstream usage and was trained for educational purposes. Please fine tune for downstream tasks or consider more serious models for inference if this doesn't fall into your usage aim. |
|
|
|
## Training procedure |
|
|
|
|
|
The following `bitsandbytes` quantization config was used during training: |
|
- load_in_8bit: False |
|
- load_in_4bit: True |
|
- llm_int8_threshold: 6.0 |
|
- llm_int8_skip_modules: None |
|
- llm_int8_enable_fp32_cpu_offload: False |
|
- llm_int8_has_fp16_weight: False |
|
- bnb_4bit_quant_type: nf4 |
|
- bnb_4bit_use_double_quant: True |
|
- bnb_4bit_compute_dtype: bfloat16 |
|
### Framework versions |
|
|
|
|
|
- PEFT 0.4.0 |
|
|
|
## Inference |
|
|
|
```python |
|
|
|
#import necessary modules |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
model_id = "UncleanCode/anacondia-70m" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id) |
|
|
|
input= tokenizer("This is a sentence ",return_tensors="pt") |
|
output= model.generate(**input) |
|
|
|
tokenizer.decode(output[0]) |
|
|
|
``` |