File size: 32,948 Bytes
550ed07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 |
import torch
import torch.nn as nn
from torch.nn import functional as F
import argparse
import os
import time
from cp_dataset import CPDataset, CPDataLoader
from cp_dataset_test import CPDatasetTest
from networks import ConditionGenerator, VGGLoss, load_checkpoint, save_checkpoint, make_grid, make_grid_3d
from network_generator import SPADEGenerator, MultiscaleDiscriminator, GANLoss, Projected_GANs_Loss, set_requires_grad
from sync_batchnorm import DataParallelWithCallback
from utils import create_network
import sys
from tqdm import tqdm
import numpy as np
from torch.utils.data import Subset
from torchvision.transforms import transforms
import eval_models as models
import torchgeometry as tgm
from pg_modules.discriminator import ProjectedDiscriminator
import cv2
def remove_overlap(seg_out, warped_cm):
assert len(warped_cm.shape) == 4
warped_cm = warped_cm - (torch.cat([seg_out[:, 1:3, :, :], seg_out[:, 5:, :, :]], dim=1)).sum(dim=1, keepdim=True) * warped_cm
return warped_cm
def get_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--name', type=str, required=True)
parser.add_argument('--gpu_ids', type=str, default='0')
parser.add_argument('-j', '--workers', type=int, default=4)
parser.add_argument('-b', '--batch_size', type=int, default=8)
parser.add_argument('--fp16', action='store_true', help='use amp')
parser.add_argument("--dataroot", default="./data/")
parser.add_argument("--datamode", default="train")
parser.add_argument("--data_list", default="train_pairs.txt")
parser.add_argument("--fine_width", type=int, default=768)
parser.add_argument("--fine_height", type=int, default=1024)
parser.add_argument("--radius", type=int, default=20)
parser.add_argument("--grid_size", type=int, default=5)
parser.add_argument('--checkpoint_dir', type=str, default='checkpoints', help='save checkpoint infos')
parser.add_argument('--tocg_checkpoint', type=str, help='condition generator checkpoint')
parser.add_argument('--gen_checkpoint', type=str, default='', help='gen checkpoint')
parser.add_argument('--dis_checkpoint', type=str, default='', help='dis checkpoint')
parser.add_argument("--display_count", type=int, default=100)
parser.add_argument("--save_count", type=int, default=1000)
parser.add_argument("--load_step", type=int, default=0)
parser.add_argument("--keep_step", type=int, default=100000)
parser.add_argument("--decay_step", type=int, default=100000)
parser.add_argument("--shuffle", action='store_true', help='shuffle input data')
parser.add_argument('--resume', action='store_true', help='resume training from the last checkpoint')
# test
parser.add_argument("--lpips_count", type=int, default=1000)
parser.add_argument("--test_datasetting", default="paired")
parser.add_argument("--test_dataroot", default="./data/")
parser.add_argument("--test_data_list", default="test_pairs.txt")
# Hyper-parameters
parser.add_argument('--G_lr', type=float, default=0.0001, help='initial learning rate for adam')
parser.add_argument('--D_lr', type=float, default=0.0004, help='initial learning rate for adam')
# SEAN-related hyper-parameters
parser.add_argument('--GMM_const', type=float, default=None, help='constraint for GMM module')
parser.add_argument('--semantic_nc', type=int, default=13, help='# of input label classes without unknown class')
parser.add_argument('--gen_semantic_nc', type=int, default=7, help='# of input label classes without unknown class')
parser.add_argument('--norm_G', type=str, default='spectralaliasinstance', help='instance normalization or batch normalization')
parser.add_argument('--norm_D', type=str, default='spectralinstance', help='instance normalization or batch normalization')
parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer')
parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in first conv layer')
parser.add_argument('--num_upsampling_layers', choices=['normal', 'more', 'most'], default='most',
help='If \'more\', add upsampling layer between the two middle resnet blocks. '
'If \'most\', also add one more (upsampling + resnet) layer at the end of the generator.')
parser.add_argument('--init_type', type=str, default='xavier', help='network initialization [normal|xavier|kaiming|orthogonal]')
parser.add_argument('--init_variance', type=float, default=0.02, help='variance of the initialization distribution')
parser.add_argument('--no_ganFeat_loss', action='store_true', help='if specified, do *not* use discriminator feature matching loss')
parser.add_argument('--lambda_l1', type=float, default=1.0, help='weight for image-level l1 loss')
parser.add_argument('--lambda_feat', type=float, default=10.0, help='weight for feature matching loss')
parser.add_argument('--lambda_vgg', type=float, default=10.0, help='weight for vgg loss')
# D
parser.add_argument('--n_layers_D', type=int, default=3, help='# layers in each discriminator')
parser.add_argument('--netD_subarch', type=str, default='n_layer', help='architecture of each discriminator')
parser.add_argument('--num_D', type=int, default=2, help='number of discriminators to be used in multiscale')
# G & D arch-related
parser.add_argument("--composition_mask", action='store_true', help='shuffle input data')
# Training
parser.add_argument('--occlusion', action='store_true')
# tocg
# network
parser.add_argument('--cond_G_ngf', type=int, default=96)
parser.add_argument("--cond_G_input_width", type=int, default=192)
parser.add_argument("--cond_G_input_height", type=int, default=256)
parser.add_argument('--cond_G_num_layers', type=int, default=5)
parser.add_argument("--warp_feature", choices=['encoder', 'T1'], default="T1")
parser.add_argument("--out_layer", choices=['relu', 'conv'], default="relu")
# New arguments for selective layer freezing and last layer control
parser.add_argument('--freeze_tocg_layers', type=int, default=0, help='number of layers to freeze in tocg from the start')
parser.add_argument('--freeze_gen_layers', type=int, default=0, help='number of layers to freeze in generator from the start')
parser.add_argument('--last_layer_mode', type=str, default='train', choices=['train', 'half', 'freeze'],
help='Mode for the last layer: train (full training), half (half parameters frozen), freeze (fully frozen)')
opt = parser.parse_args()
# set gpu ids
str_ids = opt.gpu_ids.split(',')
opt.gpu_ids = []
for str_id in str_ids:
id = int(str_id)
if id >= 0:
opt.gpu_ids.append(id)
if len(opt.gpu_ids) > 0:
torch.cuda.set_device(opt.gpu_ids[0])
assert len(opt.gpu_ids) == 0 or opt.batch_size % len(opt.gpu_ids) == 0, \
"Batch size %d is wrong. It must be a multiple of # GPUs %d." \
% (opt.batch_size, len(opt.gpu_ids))
return opt
def apply_layer_freezing(model, num_layers_to_freeze, last_layer_mode):
"""Apply selective layer freezing and handle the last layer based on mode."""
children = list(model.named_children())
total_layers = len(children)
# Freeze specified layers from the start
for i, (name, module) in enumerate(children):
if i < num_layers_to_freeze:
for param in module.parameters():
param.requires_grad = False
# Handle the last layer based on mode
if total_layers > 0 and last_layer_mode != 'train':
last_name, last_module = children[-1]
if last_layer_mode == 'freeze':
for param in last_module.parameters():
param.requires_grad = False
elif last_layer_mode == 'half':
# Freeze half of the parameters in the last layer
params = list(last_module.parameters())
half_idx = len(params) // 2
for param in params[:half_idx]:
param.requires_grad = False
for param in params[half_idx:]:
param.requires_grad = True
def train(opt, train_loader, test_loader, tocg, generator, discriminator, model):
"""
Train Generator and Condition Generator
"""
# Model
tocg.cuda()
tocg.train() # Enable training for tocg
generator.train()
discriminator.train()
if not opt.composition_mask:
discriminator.feature_network.requires_grad_(False)
discriminator.cuda()
model.eval()
# Apply layer freezing
apply_layer_freezing(tocg, opt.freeze_tocg_layers, opt.last_layer_mode)
apply_layer_freezing(generator, opt.freeze_gen_layers, opt.last_layer_mode)
# criterion
criterionGAN = None
if opt.fp16:
if opt.composition_mask:
criterionGAN = GANLoss('hinge', tensor=torch.cuda.HalfTensor)
else:
criterionGAN = Projected_GANs_Loss(tensor=torch.cuda.HalfTensor)
else:
if opt.composition_mask:
criterionGAN = GANLoss('hinge', tensor=torch.cuda.FloatTensor)
else:
criterionGAN = Projected_GANs_Loss(tensor=torch.cuda.FloatTensor)
criterionL1 = nn.L1Loss()
criterionFeat = nn.L1Loss()
criterionVGG = VGGLoss()
# optimizer
optimizer_gen = torch.optim.Adam(
list(generator.parameters()) + list(tocg.parameters()), # Include tocg parameters
lr=opt.G_lr, betas=(0.0, 0.9)
)
scheduler_gen = torch.optim.lr_scheduler.LambdaLR(optimizer_gen, lr_lambda=lambda step: 1.0 -
max(0, step * 1000 + opt.load_step - opt.keep_step) / float(opt.decay_step + 1))
optimizer_dis = torch.optim.Adam(discriminator.parameters(), lr=opt.D_lr, betas=(0.0, 0.9))
scheduler_dis = torch.optim.lr_scheduler.LambdaLR(optimizer_dis, lr_lambda=lambda step: 1.0 -
max(0, step * 1000 + opt.load_step - opt.keep_step) / float(opt.decay_step + 1))
if opt.fp16:
from apex import amp
[tocg, generator, discriminator], [optimizer_gen, optimizer_dis] = amp.initialize(
[tocg, generator, discriminator], [optimizer_gen, optimizer_dis], opt_level='O1', num_losses=2)
if len(opt.gpu_ids) > 0:
tocg = DataParallelWithCallback(tocg, device_ids=opt.gpu_ids)
generator = DataParallelWithCallback(generator, device_ids=opt.gpu_ids)
discriminator = DataParallelWithCallback(discriminator, device_ids=opt.gpu_ids)
criterionGAN = DataParallelWithCallback(criterionGAN, device_ids=opt.gpu_ids)
criterionFeat = DataParallelWithCallback(criterionFeat, device_ids=opt.gpu_ids)
criterionVGG = DataParallelWithCallback(criterionVGG, device_ids=opt.gpu_ids)
criterionL1 = DataParallelWithCallback(criterionL1, device_ids=opt.gpu_ids)
upsample = torch.nn.Upsample(scale_factor=4, mode='bilinear')
gauss = tgm.image.GaussianBlur((15, 15), (3, 3))
gauss = gauss.cuda()
checkpoint_path = os.path.join(opt.checkpoint_dir, opt.name, 'checkpoint.pth')
if opt.resume:
if os.path.exists(checkpoint_path):
print(f"Resuming from checkpoint: {checkpoint_path}")
checkpoint = torch.load(checkpoint_path)
opt.load_step = checkpoint['step']
generator.load_state_dict(checkpoint['generator_state_dict'])
discriminator.load_state_dict(checkpoint['discriminator_state_dict'])
tocg.load_state_dict(checkpoint['tocg_state_dict']) # Load tocg state
optimizer_gen.load_state_dict(checkpoint['optimizer_gen_state_dict'])
optimizer_dis.load_state_dict(checkpoint['optimizer_dis_state_dict'])
scheduler_gen.load_state_dict(checkpoint['scheduler_gen_state_dict'])
scheduler_dis.load_state_dict(checkpoint['scheduler_dis_state_dict'])
else:
print(f"Checkpoint not found at {checkpoint_path}, starting from scratch")
for step in tqdm(range(opt.load_step, opt.keep_step + opt.decay_step)):
iter_start_time = time.time()
inputs = train_loader.next_batch()
# input
agnostic = inputs['agnostic'].cuda()
parse_GT = inputs['parse'].cuda()
pose = inputs['densepose'].cuda()
parse_cloth = inputs['parse_cloth'].cuda()
parse_agnostic = inputs['parse_agnostic'].cuda()
pcm = inputs['pcm'].cuda()
cm = inputs['cloth_mask']['paired'].cuda()
c_paired = inputs['cloth']['paired'].cuda()
# target
im = inputs['image'].cuda()
# Warping Cloth (tocg is now trainable)
pre_clothes_mask_down = F.interpolate(cm, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='nearest')
input_parse_agnostic_down = F.interpolate(parse_agnostic, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='nearest')
clothes_down = F.interpolate(c_paired, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='bilinear')
densepose_down = F.interpolate(pose, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='bilinear')
input1 = torch.cat([clothes_down, pre_clothes_mask_down], 1)
input2 = torch.cat([input_parse_agnostic_down, densepose_down], 1)
flow_list_taco, fake_segmap, warped_cloth_paired_taco, warped_clothmask_paired_taco, flow_list_tvob, warped_cloth_paired_tvob, warped_clothmask_paired_tvob = tocg(input1, input2)
warped_clothmask_paired_taco_onehot = torch.FloatTensor((warped_clothmask_paired_taco.detach().cpu().numpy() > 0.5).astype(float)).cuda()
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_clothmask_paired_taco
fake_segmap = fake_segmap * cloth_mask
N, _, iH, iW = c_paired.shape
N, flow_iH, flow_iW, _ = flow_list_tvob[-1].shape
flow_tvob = F.interpolate(flow_list_tvob[-1].permute(0, 3, 1, 2), size=(iH, iW), mode='bilinear').permute(0, 2, 3, 1)
flow_tvob_norm = torch.cat([flow_tvob[:, :, :, 0:1] / ((flow_iW - 1.0) / 2.0), flow_tvob[:, :, :, 1:2] / ((flow_iH - 1.0) / 2.0)], 3)
grid = make_grid(N, iH, iW)
grid_3d = make_grid_3d(N, iH, iW)
warped_grid_tvob = grid + flow_tvob_norm
warped_cloth_tvob = F.grid_sample(c_paired, warped_grid_tvob, padding_mode='border')
warped_clothmask_tvob = F.grid_sample(cm, warped_grid_tvob, padding_mode='border')
flow_taco = F.interpolate(flow_list_taco[-1].permute(0, 4, 1, 2, 3), size=(2,iH,iW), mode='trilinear').permute(0, 2, 3, 4, 1)
flow_taco_norm = torch.cat([flow_taco[:, :, :, :, 0:1] / ((flow_iW - 1.0) / 2.0), flow_taco[:, :, :, :, 1:2] / ((flow_iH - 1.0) / 2.0), flow_taco[:, :, :, :, 2:3]], 4)
warped_cloth_tvob = warped_cloth_tvob.unsqueeze(2)
warped_cloth_paired_taco = F.grid_sample(torch.cat((warped_cloth_tvob, torch.zeros_like(warped_cloth_tvob).cuda()), dim=2), flow_taco_norm + grid_3d, padding_mode='border')
warped_cloth_paired_taco = warped_cloth_paired_taco[:,:,0,:,:]
warped_clothmask_tvob = warped_clothmask_tvob.unsqueeze(2)
warped_clothmask_taco = F.grid_sample(torch.cat((warped_clothmask_tvob, torch.zeros_like(warped_clothmask_tvob).cuda()), dim=2), flow_taco_norm + grid_3d, padding_mode='border')
warped_clothmask_taco = warped_clothmask_taco[:,:,0,:,:]
fake_parse_gauss = gauss(F.interpolate(fake_segmap, size=(iH, iW), mode='bilinear'))
fake_parse = fake_parse_gauss.argmax(dim=1)[:, None]
if opt.occlusion:
warped_clothmask_taco = remove_overlap(F.softmax(fake_parse_gauss, dim=1), warped_clothmask_taco)
warped_cloth_paired_taco = warped_cloth_paired_taco * warped_clothmask_taco + torch.ones_like(warped_cloth_paired_taco) * (1-warped_clothmask_taco)
warped_cloth_paired_taco = warped_cloth_paired_taco.detach()
old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_().cuda()
old_parse.scatter_(1, fake_parse, 1.0)
labels = {
0: ['background', [0]],
1: ['paste', [2, 4, 7, 8, 9, 10, 11]],
2: ['upper', [3]],
3: ['hair', [1]],
4: ['left_arm', [5]],
5: ['right_arm', [6]],
6: ['noise', [12]]
}
parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_().cuda()
for i in range(len(labels)):
for label in labels[i][1]:
parse[:, i] += old_parse[:, label]
parse = parse.detach()
# Train the generator and tocg
G_losses = {}
if opt.composition_mask:
output_paired_rendered, output_paired_comp = generator(torch.cat((agnostic, pose, warped_cloth_paired_taco), dim=1), parse)
output_paired_comp1 = output_paired_comp * warped_clothmask_taco
output_paired_comp = parse[:,2:3,:,:] * output_paired_comp1
output_paired = warped_cloth_paired_taco * output_paired_comp + output_paired_rendered * (1 - output_paired_comp)
fake_concat = torch.cat((parse, output_paired_rendered), dim=1)
real_concat = torch.cat((parse, im), dim=1)
pred = discriminator(torch.cat((fake_concat, real_concat), dim=0))
pred_fake = []
pred_real = []
for p in pred:
pred_fake.append([tensor[:tensor.size(0) // 2] for tensor in p])
pred_real.append([tensor[tensor.size(0) // 2:] for tensor in p])
G_losses['GAN'] = criterionGAN(pred_fake, True, for_discriminator=False)
num_D = len(pred_fake)
GAN_Feat_loss = torch.cuda.FloatTensor(len(opt.gpu_ids)).zero_()
for i in range(num_D):
num_intermediate_outputs = len(pred_fake[i]) - 1
for j in range(num_intermediate_outputs):
unweighted_loss = criterionFeat(pred_fake[i][j], pred_real[i][j].detach())
GAN_Feat_loss += unweighted_loss * opt.lambda_feat / num_D
G_losses['GAN_Feat'] = GAN_Feat_loss
G_losses['VGG'] = criterionVGG(output_paired, im) * opt.lambda_vgg + criterionVGG(output_paired_rendered, im) * opt.lambda_vgg
G_losses['L1'] = criterionL1(output_paired_rendered, im) * opt.lambda_l1 + criterionL1(output_paired, im) * opt.lambda_l1
G_losses['Composition_Mask'] = torch.mean(torch.abs(1 - output_paired_comp))
loss_gen = sum(G_losses.values()).mean()
else:
set_requires_grad(discriminator, False)
output_paired = generator(torch.cat((agnostic, pose, warped_cloth_paired_taco), dim=1), parse)
pred_fake, feats_fake = discriminator(output_paired)
pred_real, feats_real = discriminator(im)
G_losses['GAN'] = criterionGAN(pred_fake, True, for_discriminator=False) * 0.5
num_D = len(feats_fake)
GAN_Feat_loss = torch.cuda.FloatTensor(len(opt.gpu_ids)).zero_()
for i in range(num_D):
num_intermediate_outputs = len(feats_fake[i])
for j in range(num_intermediate_outputs):
unweighted_loss = criterionFeat(feats_fake[i][j], feats_real[i][j].detach())
GAN_Feat_loss += unweighted_loss * opt.lambda_feat / num_D
G_losses['GAN_Feat'] = GAN_Feat_loss
G_losses['VGG'] = criterionVGG(output_paired, im) * opt.lambda_vgg
G_losses['L1'] = criterionL1(output_paired, im) * opt.lambda_l1
loss_gen = sum(G_losses.values()).mean()
optimizer_gen.zero_grad()
if opt.fp16:
with amp.scale_loss(loss_gen, optimizer_gen, loss_id=0) as loss_gen_scaled:
loss_gen_scaled.backward()
else:
loss_gen.backward()
optimizer_gen.step()
# Train the discriminator
D_losses = {}
if opt.composition_mask:
with torch.no_grad():
output_paired_rendered, output_comp = generator(torch.cat((agnostic, pose, warped_cloth_paired_taco), dim=1), parse)
output_comp1 = output_comp * warped_clothmask_taco
output_comp = parse[:,2:3,:,:] * output_comp1
output = warped_cloth_paired_taco * output_comp + output_paired_rendered * (1 - output_comp)
output_comp = output_comp.detach()
output = output.detach()
output_comp.requires_grad_()
output.requires_grad_()
fake_concat = torch.cat((parse, output_paired_rendered), dim=1)
real_concat = torch.cat((parse, im), dim=1)
pred = discriminator(torch.cat((fake_concat, real_concat), dim=0))
pred_fake = []
pred_real = []
for p in pred:
pred_fake.append([tensor[:tensor.size(0) // 2] for tensor in p])
pred_real.append([tensor[tensor.size(0) // 2:] for tensor in p])
D_losses['D_Fake'] = criterionGAN(pred_fake, False, for_discriminator=True)
D_losses['D_Real'] = criterionGAN(pred_real, True, for_discriminator=True)
loss_dis = sum(D_losses.values()).mean()
else:
set_requires_grad(discriminator, True)
discriminator.module.feature_network.requires_grad_(False)
with torch.no_grad():
output = generator(torch.cat((agnostic, pose, warped_cloth_paired_taco), dim=1), parse)
output = output.detach()
output.requires_grad_()
pred_fake, _ = discriminator(output)
pred_real, _ = discriminator(im)
D_losses['D_Fake'] = criterionGAN(pred_fake, False, for_discriminator=True)
D_losses['D_Real'] = criterionGAN(pred_real, True, for_discriminator=True)
loss_dis = sum(D_losses.values()).mean()
optimizer_dis.zero_grad()
if opt.fp16:
with amp.scale_loss(loss_dis, optimizer_dis, loss_id=1) as loss_dis_scaled:
loss_dis_scaled.backward()
else:
loss_dis.backward()
optimizer_dis.step()
if not opt.composition_mask:
set_requires_grad(discriminator, False)
if (step+1) % 100 == 0:
a_0 = im.cuda()[0]
b_0 = output.cuda()[0]
c_0 = warped_cloth_paired_taco.cuda()[0]
combine = torch.cat((a_0, b_0, c_0), dim=2)
cv_img=(combine.permute(1,2,0).detach().cpu().numpy()+1)/2
rgb=(cv_img*255).astype(np.uint8)
bgr=cv2.cvtColor(rgb,cv2.COLOR_RGB2BGR)
cv2.imwrite('sample_fs_toig/'+str(step)+'.jpg',bgr)
# Evaluate the generator
if (step + 1) % opt.lpips_count == 0:
generator.eval()
tocg.eval()
T2 = transforms.Compose([transforms.Resize((128, 128))])
lpips_list = []
avg_distance = 0.0
with torch.no_grad():
print("LPIPS")
for i in tqdm(range(500)):
inputs = test_loader.next_batch()
agnostic = inputs['agnostic'].cuda()
parse_GT = inputs['parse'].cuda()
pose = inputs['densepose'].cuda()
parse_cloth = inputs['parse_cloth'].cuda()
parse_agnostic = inputs['parse_agnostic'].cuda()
pcm = inputs['pcm'].cuda()
cm = inputs['cloth_mask']['paired'].cuda()
c_paired = inputs['cloth']['paired'].cuda()
im = inputs['image'].cuda()
pre_clothes_mask_down = F.interpolate(cm, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='nearest')
input_parse_agnostic_down = F.interpolate(parse_agnostic, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='nearest')
clothes_down = F.interpolate(c_paired, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='bilinear')
densepose_down = F.interpolate(pose, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='bilinear')
input1 = torch.cat([clothes_down, pre_clothes_mask_down], 1)
input2 = torch.cat([input_parse_agnostic_down, densepose_down], 1)
flow_list_taco, fake_segmap, warped_cloth_paired_taco, warped_clothmask_paired_taco, flow_list_tvob, warped_cloth_paired_tvob, warped_clothmask_paired_tvob = tocg(input1, input2)
warped_clothmask_paired_taco_onehot = torch.FloatTensor((warped_clothmask_paired_taco.detach().cpu().numpy() > 0.5).astype(float)).cuda()
cloth_mask = torch.ones_like(fake_segmap)
cloth_mask[:,3:4, :, :] = warped_clothmask_paired_taco
fake_segmap = fake_segmap * cloth_mask
N, _, iH, iW = c_paired.shape
N, flow_iH, flow_iW, _ = flow_list_tvob[-1].shape
flow_tvob = F.interpolate(flow_list_tvob[-1].permute(0, 3, 1, 2), size=(iH, iW), mode='bilinear').permute(0, 2, 3, 1)
flow_tvob_norm = torch.cat([flow_tvob[:, :, :, 0:1] / ((flow_iW - 1.0) / 2.0), flow_tvob[:, :, :, 1:2] / ((flow_iH - 1.0) / 2.0)], 3)
grid = make_grid(N, iH, iW)
grid_3d = make_grid_3d(N, iH, iW)
warped_grid_tvob = grid + flow_tvob_norm
warped_cloth_tvob = F.grid_sample(c_paired, warped_grid_tvob, padding_mode='border')
warped_clothmask_tvob = F.grid_sample(cm, warped_grid_tvob, padding_mode='border')
flow_taco = F.interpolate(flow_list_taco[-1].permute(0, 4, 1, 2, 3), size=(2, iH, iW), mode='trilinear').permute(0, 2, 3, 4, 1)
flow_taco_norm = torch.cat([flow_taco[:, :, :, :, 0:1] / ((flow_iW - 1.0) / 2.0), flow_taco[:, :, :, :, 1:2] / ((flow_iH - 1.0) / 2.0), flow_taco[:, :, :, :, 2:3]], 4)
warped_cloth_tvob = warped_cloth_tvob.unsqueeze(2)
warped_cloth_paired_taco = F.grid_sample(torch.cat((warped_cloth_tvob, torch.zeros_like(warped_cloth_tvob).cuda()), dim=2), flow_taco_norm + grid_3d, padding_mode='border')
warped_cloth_paired_taco = warped_cloth_paired_taco[:,:,0,:,:]
warped_clothmask_tvob = warped_clothmask_tvob.unsqueeze(2)
warped_clothmask_taco = F.grid_sample(torch.cat((warped_clothmask_tvob, torch.zeros_like(warped_clothmask_tvob).cuda()), dim=2), flow_taco_norm + grid_3d, padding_mode='border')
warped_clothmask_taco = warped_clothmask_taco[:,:,0,:,:]
fake_parse_gauss = gauss(F.interpolate(fake_segmap, size=(iH, iW), mode='bilinear'))
fake_parse = fake_parse_gauss.argmax(dim=1)[:, None]
if opt.occlusion:
warped_clothmask_taco = remove_overlap(F.softmax(fake_parse_gauss, dim=1), warped_clothmask_taco)
warped_cloth_paired_taco = warped_cloth_paired_taco * warped_clothmask_taco + torch.ones_like(warped_cloth_paired_taco) * (1-warped_clothmask_taco)
warped_cloth_paired_taco = warped_cloth_paired_taco.detach()
old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_().cuda()
old_parse.scatter_(1, fake_parse, 1.0)
labels = {
0: ['background', [0]],
1: ['paste', [2, 4, 7, 8, 9, 10, 11]],
2: ['upper', [3]],
3: ['hair', [1]],
4: ['left_arm', [5]],
5: ['right_arm', [6]],
6: ['noise', [12]]
}
parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_().cuda()
for i in range(len(labels)):
for label in labels[i][1]:
parse[:, i] += old_parse[:, label]
parse = parse.detach()
if opt.composition_mask:
output_paired_rendered, output_paired_comp = generator(torch.cat((agnostic, pose, warped_cloth_paired_taco), dim=1), parse)
output_paired_comp1 = output_paired_comp * warped_clothmask_taco
output_paired_comp = parse[:,2:3,:,:] * output_paired_comp1
output_paired = warped_cloth_paired_taco * output_paired_comp + output_paired_rendered * (1 - output_paired_comp)
else:
output_paired = generator(torch.cat((agnostic, pose, warped_cloth_paired_taco), dim=1), parse)
avg_distance += model.forward(T2(im), T2(output_paired))
avg_distance = avg_distance / 500
print(f"LPIPS: {avg_distance}")
generator.train()
tocg.train()
if (step + 1) % opt.display_count == 0:
t = time.time() - iter_start_time
print("step: %8d, time: %.3f, G_loss: %.4f, G_adv_loss: %.4f, D_loss: %.4f, D_fake_loss: %.4f, D_real_loss: %.4f"
% (step + 1, t, loss_gen.item(), G_losses['GAN'].mean().item(), loss_dis.item(),
D_losses['D_Fake'].mean().item(), D_losses['D_Real'].mean().item()), flush=True)
if (step + 1) % opt.save_count == 0:
checkpoint = {
'step': step + 1,
'generator_state_dict': generator.state_dict(),
'discriminator_state_dict': discriminator.state_dict(),
'tocg_state_dict': tocg.state_dict(), # Save tocg state
'optimizer_gen_state_dict': optimizer_gen.state_dict(),
'optimizer_dis_state_dict': optimizer_dis.state_dict(),
'scheduler_gen_state_dict': scheduler_gen.state_dict(),
'scheduler_dis_state_dict': scheduler_dis.state_dict(),
}
torch.save(checkpoint, checkpoint_path)
if (step + 1) % 1000 == 0:
scheduler_gen.step()
scheduler_dis.step()
def main():
opt = get_opt()
print(opt)
print("Start to train %s!" % opt.name)
os.makedirs('sample_fs_toig', exist_ok=True)
os.makedirs(os.path.join(opt.checkpoint_dir, opt.name), exist_ok=True)
train_dataset = CPDataset(opt)
train_loader = CPDataLoader(opt, train_dataset)
opt.batch_size = 1
opt.dataroot = opt.test_dataroot
opt.datamode = 'test'
opt.data_list = opt.test_data_list
test_dataset = CPDatasetTest(opt)
test_dataset = Subset(test_dataset, np.arange(500))
test_loader = CPDataLoader(opt, test_dataset)
input1_nc = 4
input2_nc = opt.semantic_nc + 3
tocg = ConditionGenerator(opt, input1_nc=input1_nc, input2_nc=input2_nc, output_nc=13, ngf=opt.cond_G_ngf, norm_layer=nn.BatchNorm2d, num_layers=opt.cond_G_num_layers)
load_checkpoint(tocg, opt.tocg_checkpoint)
generator = SPADEGenerator(opt, 3+3+3)
generator.print_network()
if len(opt.gpu_ids) > 0:
assert(torch.cuda.is_available())
generator.cuda()
generator.init_weights(opt.init_type, opt.init_variance)
discriminator = None
if opt.composition_mask:
discriminator = create_network(MultiscaleDiscriminator, opt)
else:
discriminator = ProjectedDiscriminator(interp224=False)
model = models.PerceptualLoss(model='net-lin',net='alex',use_gpu=True)
if opt.gen_checkpoint and os.path.exists(opt.gen_checkpoint):
load_checkpoint(generator, opt.gen_checkpoint)
if opt.dis_checkpoint and os.path.exists(opt.dis_checkpoint):
load_checkpoint(discriminator, opt.dis_checkpoint)
train(opt, train_loader, test_loader, tocg, generator, discriminator, model)
save_checkpoint(generator, os.path.join(opt.checkpoint_dir, opt.name, 'gen_model_final.pth'))
save_checkpoint(discriminator, os.path.join(opt.checkpoint_dir, opt.name, 'dis_model_final.pth'))
save_checkpoint(tocg, os.path.join(opt.checkpoint_dir, opt.name, 'tocg_model_final.pth'))
print("Finished training %s!" % opt.name)
if __name__ == "__main__":
main() |