File size: 32,948 Bytes
550ed07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
import torch
import torch.nn as nn
from torch.nn import functional as F

import argparse
import os
import time
from cp_dataset import CPDataset, CPDataLoader
from cp_dataset_test import CPDatasetTest
from networks import ConditionGenerator, VGGLoss, load_checkpoint, save_checkpoint, make_grid, make_grid_3d
from network_generator import SPADEGenerator, MultiscaleDiscriminator, GANLoss, Projected_GANs_Loss, set_requires_grad

from sync_batchnorm import DataParallelWithCallback
from utils import create_network
import sys
from tqdm import tqdm

import numpy as np
from torch.utils.data import Subset
from torchvision.transforms import transforms
import eval_models as models
import torchgeometry as tgm

from pg_modules.discriminator import ProjectedDiscriminator
import cv2

def remove_overlap(seg_out, warped_cm):
    assert len(warped_cm.shape) == 4
    warped_cm = warped_cm - (torch.cat([seg_out[:, 1:3, :, :], seg_out[:, 5:, :, :]], dim=1)).sum(dim=1, keepdim=True) * warped_cm
    return warped_cm

def get_opt():
    parser = argparse.ArgumentParser()

    parser.add_argument('--name', type=str, required=True)
    parser.add_argument('--gpu_ids', type=str, default='0')
    parser.add_argument('-j', '--workers', type=int, default=4)
    parser.add_argument('-b', '--batch_size', type=int, default=8)
    parser.add_argument('--fp16', action='store_true', help='use amp')

    parser.add_argument("--dataroot", default="./data/")
    parser.add_argument("--datamode", default="train")
    parser.add_argument("--data_list", default="train_pairs.txt")
    parser.add_argument("--fine_width", type=int, default=768)
    parser.add_argument("--fine_height", type=int, default=1024)
    parser.add_argument("--radius", type=int, default=20)
    parser.add_argument("--grid_size", type=int, default=5)

    parser.add_argument('--checkpoint_dir', type=str, default='checkpoints', help='save checkpoint infos')
    parser.add_argument('--tocg_checkpoint', type=str, help='condition generator checkpoint')
    parser.add_argument('--gen_checkpoint', type=str, default='', help='gen checkpoint')
    parser.add_argument('--dis_checkpoint', type=str, default='', help='dis checkpoint')

    parser.add_argument("--display_count", type=int, default=100)
    parser.add_argument("--save_count", type=int, default=1000)
    parser.add_argument("--load_step", type=int, default=0)
    parser.add_argument("--keep_step", type=int, default=100000)
    parser.add_argument("--decay_step", type=int, default=100000)
    parser.add_argument("--shuffle", action='store_true', help='shuffle input data')
    parser.add_argument('--resume', action='store_true', help='resume training from the last checkpoint')
    
    # test
    parser.add_argument("--lpips_count", type=int, default=1000)
    parser.add_argument("--test_datasetting", default="paired")
    parser.add_argument("--test_dataroot", default="./data/")
    parser.add_argument("--test_data_list", default="test_pairs.txt")

    # Hyper-parameters
    parser.add_argument('--G_lr', type=float, default=0.0001, help='initial learning rate for adam')
    parser.add_argument('--D_lr', type=float, default=0.0004, help='initial learning rate for adam')

    # SEAN-related hyper-parameters
    parser.add_argument('--GMM_const', type=float, default=None, help='constraint for GMM module')
    parser.add_argument('--semantic_nc', type=int, default=13, help='# of input label classes without unknown class')
    parser.add_argument('--gen_semantic_nc', type=int, default=7, help='# of input label classes without unknown class')
    parser.add_argument('--norm_G', type=str, default='spectralaliasinstance', help='instance normalization or batch normalization')
    parser.add_argument('--norm_D', type=str, default='spectralinstance', help='instance normalization or batch normalization')
    parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in first conv layer')
    parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in first conv layer')
    parser.add_argument('--num_upsampling_layers', choices=['normal', 'more', 'most'], default='most',
                    help='If \'more\', add upsampling layer between the two middle resnet blocks. '
                            'If \'most\', also add one more (upsampling + resnet) layer at the end of the generator.')
    parser.add_argument('--init_type', type=str, default='xavier', help='network initialization [normal|xavier|kaiming|orthogonal]')
    parser.add_argument('--init_variance', type=float, default=0.02, help='variance of the initialization distribution')

    parser.add_argument('--no_ganFeat_loss', action='store_true', help='if specified, do *not* use discriminator feature matching loss')
    parser.add_argument('--lambda_l1', type=float, default=1.0, help='weight for image-level l1 loss')
    parser.add_argument('--lambda_feat', type=float, default=10.0, help='weight for feature matching loss')
    parser.add_argument('--lambda_vgg', type=float, default=10.0, help='weight for vgg loss')
    
    # D
    parser.add_argument('--n_layers_D', type=int, default=3, help='# layers in each discriminator')
    parser.add_argument('--netD_subarch', type=str, default='n_layer', help='architecture of each discriminator')
    parser.add_argument('--num_D', type=int, default=2, help='number of discriminators to be used in multiscale')
    
    # G & D arch-related
    parser.add_argument("--composition_mask", action='store_true', help='shuffle input data')

    # Training
    parser.add_argument('--occlusion', action='store_true')
    # tocg
    # network
    parser.add_argument('--cond_G_ngf', type=int, default=96)
    parser.add_argument("--cond_G_input_width", type=int, default=192)
    parser.add_argument("--cond_G_input_height", type=int, default=256)
    parser.add_argument('--cond_G_num_layers', type=int, default=5)
    parser.add_argument("--warp_feature", choices=['encoder', 'T1'], default="T1")
    parser.add_argument("--out_layer", choices=['relu', 'conv'], default="relu")

    # New arguments for selective layer freezing and last layer control
    parser.add_argument('--freeze_tocg_layers', type=int, default=0, help='number of layers to freeze in tocg from the start')
    parser.add_argument('--freeze_gen_layers', type=int, default=0, help='number of layers to freeze in generator from the start')
    parser.add_argument('--last_layer_mode', type=str, default='train', choices=['train', 'half', 'freeze'],
                        help='Mode for the last layer: train (full training), half (half parameters frozen), freeze (fully frozen)')

    opt = parser.parse_args()

    # set gpu ids
    str_ids = opt.gpu_ids.split(',')
    opt.gpu_ids = []
    for str_id in str_ids:
        id = int(str_id)
        if id >= 0:
            opt.gpu_ids.append(id)
    if len(opt.gpu_ids) > 0:
        torch.cuda.set_device(opt.gpu_ids[0])

    assert len(opt.gpu_ids) == 0 or opt.batch_size % len(opt.gpu_ids) == 0, \
        "Batch size %d is wrong. It must be a multiple of # GPUs %d." \
        % (opt.batch_size, len(opt.gpu_ids))

    return opt

def apply_layer_freezing(model, num_layers_to_freeze, last_layer_mode):
    """Apply selective layer freezing and handle the last layer based on mode."""
    children = list(model.named_children())
    total_layers = len(children)
    
    # Freeze specified layers from the start
    for i, (name, module) in enumerate(children):
        if i < num_layers_to_freeze:
            for param in module.parameters():
                param.requires_grad = False
    
    # Handle the last layer based on mode
    if total_layers > 0 and last_layer_mode != 'train':
        last_name, last_module = children[-1]
        if last_layer_mode == 'freeze':
            for param in last_module.parameters():
                param.requires_grad = False
        elif last_layer_mode == 'half':
            # Freeze half of the parameters in the last layer
            params = list(last_module.parameters())
            half_idx = len(params) // 2
            for param in params[:half_idx]:
                param.requires_grad = False
            for param in params[half_idx:]:
                param.requires_grad = True

def train(opt, train_loader, test_loader, tocg, generator, discriminator, model):
    """
        Train Generator and Condition Generator
    """
    # Model
    tocg.cuda()
    tocg.train()  # Enable training for tocg
    generator.train()
    discriminator.train()
    if not opt.composition_mask:
        discriminator.feature_network.requires_grad_(False)
    discriminator.cuda()
    model.eval()

    # Apply layer freezing
    apply_layer_freezing(tocg, opt.freeze_tocg_layers, opt.last_layer_mode)
    apply_layer_freezing(generator, opt.freeze_gen_layers, opt.last_layer_mode)

    # criterion
    criterionGAN = None
    if opt.fp16:
        if opt.composition_mask:
            criterionGAN = GANLoss('hinge', tensor=torch.cuda.HalfTensor)
        else:
            criterionGAN = Projected_GANs_Loss(tensor=torch.cuda.HalfTensor)
    else:
        if opt.composition_mask:
            criterionGAN = GANLoss('hinge', tensor=torch.cuda.FloatTensor)
        else:
            criterionGAN = Projected_GANs_Loss(tensor=torch.cuda.FloatTensor)
    
    criterionL1 = nn.L1Loss()
    criterionFeat = nn.L1Loss()
    criterionVGG = VGGLoss()

    # optimizer
    optimizer_gen = torch.optim.Adam(
        list(generator.parameters()) + list(tocg.parameters()),  # Include tocg parameters
        lr=opt.G_lr, betas=(0.0, 0.9)
    )
    scheduler_gen = torch.optim.lr_scheduler.LambdaLR(optimizer_gen, lr_lambda=lambda step: 1.0 -
            max(0, step * 1000 + opt.load_step - opt.keep_step) / float(opt.decay_step + 1))
    optimizer_dis = torch.optim.Adam(discriminator.parameters(), lr=opt.D_lr, betas=(0.0, 0.9))
    scheduler_dis = torch.optim.lr_scheduler.LambdaLR(optimizer_dis, lr_lambda=lambda step: 1.0 -
            max(0, step * 1000 + opt.load_step - opt.keep_step) / float(opt.decay_step + 1))

    if opt.fp16:
        from apex import amp
        [tocg, generator, discriminator], [optimizer_gen, optimizer_dis] = amp.initialize(
            [tocg, generator, discriminator], [optimizer_gen, optimizer_dis], opt_level='O1', num_losses=2)
        
    if len(opt.gpu_ids) > 0:
        tocg = DataParallelWithCallback(tocg, device_ids=opt.gpu_ids)
        generator = DataParallelWithCallback(generator, device_ids=opt.gpu_ids)
        discriminator = DataParallelWithCallback(discriminator, device_ids=opt.gpu_ids)
        criterionGAN = DataParallelWithCallback(criterionGAN, device_ids=opt.gpu_ids)
        criterionFeat = DataParallelWithCallback(criterionFeat, device_ids=opt.gpu_ids)
        criterionVGG = DataParallelWithCallback(criterionVGG, device_ids=opt.gpu_ids)
        criterionL1 = DataParallelWithCallback(criterionL1, device_ids=opt.gpu_ids)
        
    upsample = torch.nn.Upsample(scale_factor=4, mode='bilinear')
    gauss = tgm.image.GaussianBlur((15, 15), (3, 3))
    gauss = gauss.cuda()

    checkpoint_path = os.path.join(opt.checkpoint_dir, opt.name, 'checkpoint.pth')
    if opt.resume:
        if os.path.exists(checkpoint_path):
            print(f"Resuming from checkpoint: {checkpoint_path}")
            checkpoint = torch.load(checkpoint_path)
            opt.load_step = checkpoint['step']
            generator.load_state_dict(checkpoint['generator_state_dict'])
            discriminator.load_state_dict(checkpoint['discriminator_state_dict'])
            tocg.load_state_dict(checkpoint['tocg_state_dict'])  # Load tocg state
            optimizer_gen.load_state_dict(checkpoint['optimizer_gen_state_dict'])
            optimizer_dis.load_state_dict(checkpoint['optimizer_dis_state_dict'])
            scheduler_gen.load_state_dict(checkpoint['scheduler_gen_state_dict'])
            scheduler_dis.load_state_dict(checkpoint['scheduler_dis_state_dict'])
        else:
            print(f"Checkpoint not found at {checkpoint_path}, starting from scratch")

    for step in tqdm(range(opt.load_step, opt.keep_step + opt.decay_step)):
        iter_start_time = time.time()
        inputs = train_loader.next_batch()

        # input
        agnostic = inputs['agnostic'].cuda()
        parse_GT = inputs['parse'].cuda()
        pose = inputs['densepose'].cuda()
        parse_cloth = inputs['parse_cloth'].cuda()
        parse_agnostic = inputs['parse_agnostic'].cuda()
        pcm = inputs['pcm'].cuda()
        cm = inputs['cloth_mask']['paired'].cuda()
        c_paired = inputs['cloth']['paired'].cuda()
        
        # target
        im = inputs['image'].cuda()

        # Warping Cloth (tocg is now trainable)
        pre_clothes_mask_down = F.interpolate(cm, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='nearest')
        input_parse_agnostic_down = F.interpolate(parse_agnostic, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='nearest')
        clothes_down = F.interpolate(c_paired, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='bilinear')
        densepose_down = F.interpolate(pose, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='bilinear')
        
        input1 = torch.cat([clothes_down, pre_clothes_mask_down], 1)
        input2 = torch.cat([input_parse_agnostic_down, densepose_down], 1)

        flow_list_taco, fake_segmap, warped_cloth_paired_taco, warped_clothmask_paired_taco, flow_list_tvob, warped_cloth_paired_tvob, warped_clothmask_paired_tvob = tocg(input1, input2)
        
        warped_clothmask_paired_taco_onehot = torch.FloatTensor((warped_clothmask_paired_taco.detach().cpu().numpy() > 0.5).astype(float)).cuda()
        
        cloth_mask = torch.ones_like(fake_segmap)
        cloth_mask[:,3:4, :, :] = warped_clothmask_paired_taco
        fake_segmap = fake_segmap * cloth_mask
                
        N, _, iH, iW = c_paired.shape
        N, flow_iH, flow_iW, _ = flow_list_tvob[-1].shape

        flow_tvob = F.interpolate(flow_list_tvob[-1].permute(0, 3, 1, 2), size=(iH, iW), mode='bilinear').permute(0, 2, 3, 1)
        flow_tvob_norm = torch.cat([flow_tvob[:, :, :, 0:1] / ((flow_iW - 1.0) / 2.0), flow_tvob[:, :, :, 1:2] / ((flow_iH - 1.0) / 2.0)], 3)

        grid = make_grid(N, iH, iW)
        grid_3d = make_grid_3d(N, iH, iW)

        warped_grid_tvob = grid + flow_tvob_norm
        warped_cloth_tvob = F.grid_sample(c_paired, warped_grid_tvob, padding_mode='border')
        warped_clothmask_tvob = F.grid_sample(cm, warped_grid_tvob, padding_mode='border')

        flow_taco = F.interpolate(flow_list_taco[-1].permute(0, 4, 1, 2, 3), size=(2,iH,iW), mode='trilinear').permute(0, 2, 3, 4, 1)
        flow_taco_norm = torch.cat([flow_taco[:, :, :, :, 0:1] / ((flow_iW - 1.0) / 2.0), flow_taco[:, :, :, :, 1:2] / ((flow_iH - 1.0) / 2.0), flow_taco[:, :, :, :, 2:3]], 4)
        warped_cloth_tvob = warped_cloth_tvob.unsqueeze(2)
        warped_cloth_paired_taco = F.grid_sample(torch.cat((warped_cloth_tvob, torch.zeros_like(warped_cloth_tvob).cuda()), dim=2), flow_taco_norm + grid_3d, padding_mode='border')
        warped_cloth_paired_taco = warped_cloth_paired_taco[:,:,0,:,:]

        warped_clothmask_tvob = warped_clothmask_tvob.unsqueeze(2)
        warped_clothmask_taco = F.grid_sample(torch.cat((warped_clothmask_tvob, torch.zeros_like(warped_clothmask_tvob).cuda()), dim=2), flow_taco_norm + grid_3d, padding_mode='border')
        warped_clothmask_taco = warped_clothmask_taco[:,:,0,:,:]

        fake_parse_gauss = gauss(F.interpolate(fake_segmap, size=(iH, iW), mode='bilinear'))
        fake_parse = fake_parse_gauss.argmax(dim=1)[:, None]

        if opt.occlusion:
            warped_clothmask_taco = remove_overlap(F.softmax(fake_parse_gauss, dim=1), warped_clothmask_taco)
            warped_cloth_paired_taco = warped_cloth_paired_taco * warped_clothmask_taco + torch.ones_like(warped_cloth_paired_taco) * (1-warped_clothmask_taco)
            warped_cloth_paired_taco = warped_cloth_paired_taco.detach()
            
        old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_().cuda()
        old_parse.scatter_(1, fake_parse, 1.0)

        labels = {
            0:  ['background',  [0]],
            1:  ['paste',       [2, 4, 7, 8, 9, 10, 11]],
            2:  ['upper',       [3]],
            3:  ['hair',        [1]],
            4:  ['left_arm',    [5]],
            5:  ['right_arm',   [6]],
            6:  ['noise',       [12]]
        }
        parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_().cuda()
        for i in range(len(labels)):
            for label in labels[i][1]:
                parse[:, i] += old_parse[:, label]
                
        parse = parse.detach()

        # Train the generator and tocg
        G_losses = {}
        if opt.composition_mask:
            output_paired_rendered, output_paired_comp = generator(torch.cat((agnostic, pose, warped_cloth_paired_taco), dim=1), parse)
            output_paired_comp1 = output_paired_comp * warped_clothmask_taco
            output_paired_comp = parse[:,2:3,:,:] * output_paired_comp1
            output_paired = warped_cloth_paired_taco * output_paired_comp + output_paired_rendered * (1 - output_paired_comp)

            fake_concat = torch.cat((parse, output_paired_rendered), dim=1)
            real_concat = torch.cat((parse, im), dim=1)
            pred = discriminator(torch.cat((fake_concat, real_concat), dim=0))

            pred_fake = []
            pred_real = []
            for p in pred:
                pred_fake.append([tensor[:tensor.size(0) // 2] for tensor in p])
                pred_real.append([tensor[tensor.size(0) // 2:] for tensor in p])
            
            G_losses['GAN'] = criterionGAN(pred_fake, True, for_discriminator=False)

            num_D = len(pred_fake)
            GAN_Feat_loss = torch.cuda.FloatTensor(len(opt.gpu_ids)).zero_()
            for i in range(num_D):
                num_intermediate_outputs = len(pred_fake[i]) - 1
                for j in range(num_intermediate_outputs):
                    unweighted_loss = criterionFeat(pred_fake[i][j], pred_real[i][j].detach())
                    GAN_Feat_loss += unweighted_loss * opt.lambda_feat / num_D
            G_losses['GAN_Feat'] = GAN_Feat_loss

            G_losses['VGG'] = criterionVGG(output_paired, im) * opt.lambda_vgg + criterionVGG(output_paired_rendered, im) * opt.lambda_vgg
            G_losses['L1'] = criterionL1(output_paired_rendered, im) * opt.lambda_l1 + criterionL1(output_paired, im) * opt.lambda_l1
            G_losses['Composition_Mask'] = torch.mean(torch.abs(1 - output_paired_comp))

            loss_gen = sum(G_losses.values()).mean()

        else:
            set_requires_grad(discriminator, False)
            output_paired = generator(torch.cat((agnostic, pose, warped_cloth_paired_taco), dim=1), parse)

            pred_fake, feats_fake = discriminator(output_paired)
            pred_real, feats_real = discriminator(im)

            G_losses['GAN'] = criterionGAN(pred_fake, True, for_discriminator=False) * 0.5

            num_D = len(feats_fake)
            GAN_Feat_loss = torch.cuda.FloatTensor(len(opt.gpu_ids)).zero_()
            for i in range(num_D):
                num_intermediate_outputs = len(feats_fake[i])
                for j in range(num_intermediate_outputs):
                    unweighted_loss = criterionFeat(feats_fake[i][j], feats_real[i][j].detach())
                    GAN_Feat_loss += unweighted_loss * opt.lambda_feat / num_D
            G_losses['GAN_Feat'] = GAN_Feat_loss

            G_losses['VGG'] = criterionVGG(output_paired, im) * opt.lambda_vgg
            G_losses['L1'] = criterionL1(output_paired, im) * opt.lambda_l1

            loss_gen = sum(G_losses.values()).mean()

        optimizer_gen.zero_grad()
        if opt.fp16:
            with amp.scale_loss(loss_gen, optimizer_gen, loss_id=0) as loss_gen_scaled:
                loss_gen_scaled.backward()
        else:
            loss_gen.backward()
        optimizer_gen.step()

        # Train the discriminator
        D_losses = {}
        if opt.composition_mask:
            with torch.no_grad():            
                output_paired_rendered, output_comp = generator(torch.cat((agnostic, pose, warped_cloth_paired_taco), dim=1), parse)
                output_comp1 = output_comp * warped_clothmask_taco
                output_comp = parse[:,2:3,:,:] * output_comp1
                output = warped_cloth_paired_taco * output_comp + output_paired_rendered * (1 - output_comp)
                output_comp = output_comp.detach()
                output = output.detach()
                output_comp.requires_grad_()
                output.requires_grad_()

            fake_concat = torch.cat((parse, output_paired_rendered), dim=1)
            real_concat = torch.cat((parse, im), dim=1)
            pred = discriminator(torch.cat((fake_concat, real_concat), dim=0))

            pred_fake = []
            pred_real = []
            for p in pred:
                pred_fake.append([tensor[:tensor.size(0) // 2] for tensor in p])
                pred_real.append([tensor[tensor.size(0) // 2:] for tensor in p])
            
            D_losses['D_Fake'] = criterionGAN(pred_fake, False, for_discriminator=True)
            D_losses['D_Real'] = criterionGAN(pred_real, True, for_discriminator=True)
            
            loss_dis = sum(D_losses.values()).mean()

        else:
            set_requires_grad(discriminator, True)
            discriminator.module.feature_network.requires_grad_(False)

            with torch.no_grad():
                output = generator(torch.cat((agnostic, pose, warped_cloth_paired_taco), dim=1), parse)
                output = output.detach()
                output.requires_grad_()

            pred_fake, _ = discriminator(output)
            pred_real, _ = discriminator(im)

            D_losses['D_Fake'] = criterionGAN(pred_fake, False, for_discriminator=True)
            D_losses['D_Real'] = criterionGAN(pred_real, True, for_discriminator=True)

            loss_dis = sum(D_losses.values()).mean()

        optimizer_dis.zero_grad()
        if opt.fp16:
            with amp.scale_loss(loss_dis, optimizer_dis, loss_id=1) as loss_dis_scaled:
                loss_dis_scaled.backward()
        else:
            loss_dis.backward()
        optimizer_dis.step()
        
        if not opt.composition_mask:
            set_requires_grad(discriminator, False)

        if (step+1) % 100 == 0:
            a_0 = im.cuda()[0]
            b_0 = output.cuda()[0]
            c_0 = warped_cloth_paired_taco.cuda()[0]
            combine = torch.cat((a_0, b_0, c_0), dim=2)
            cv_img=(combine.permute(1,2,0).detach().cpu().numpy()+1)/2
            rgb=(cv_img*255).astype(np.uint8)
            bgr=cv2.cvtColor(rgb,cv2.COLOR_RGB2BGR)
            cv2.imwrite('sample_fs_toig/'+str(step)+'.jpg',bgr)

        # Evaluate the generator
        if (step + 1) % opt.lpips_count == 0:
            generator.eval()
            tocg.eval()
            T2 = transforms.Compose([transforms.Resize((128, 128))])
            lpips_list = []
            avg_distance = 0.0
            
            with torch.no_grad():
                print("LPIPS")
                for i in tqdm(range(500)):
                    inputs = test_loader.next_batch()
                    agnostic = inputs['agnostic'].cuda()
                    parse_GT = inputs['parse'].cuda()
                    pose = inputs['densepose'].cuda()
                    parse_cloth = inputs['parse_cloth'].cuda()
                    parse_agnostic = inputs['parse_agnostic'].cuda()
                    pcm = inputs['pcm'].cuda()
                    cm = inputs['cloth_mask']['paired'].cuda()
                    c_paired = inputs['cloth']['paired'].cuda()
                    im = inputs['image'].cuda()
                                
                    pre_clothes_mask_down = F.interpolate(cm, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='nearest')
                    input_parse_agnostic_down = F.interpolate(parse_agnostic, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='nearest')
                    clothes_down = F.interpolate(c_paired, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='bilinear')
                    densepose_down = F.interpolate(pose, size=(opt.cond_G_input_height, opt.cond_G_input_width), mode='bilinear')
                    
                    input1 = torch.cat([clothes_down, pre_clothes_mask_down], 1)
                    input2 = torch.cat([input_parse_agnostic_down, densepose_down], 1)

                    flow_list_taco, fake_segmap, warped_cloth_paired_taco, warped_clothmask_paired_taco, flow_list_tvob, warped_cloth_paired_tvob, warped_clothmask_paired_tvob = tocg(input1, input2)
                    
                    warped_clothmask_paired_taco_onehot = torch.FloatTensor((warped_clothmask_paired_taco.detach().cpu().numpy() > 0.5).astype(float)).cuda()
                    
                    cloth_mask = torch.ones_like(fake_segmap)
                    cloth_mask[:,3:4, :, :] = warped_clothmask_paired_taco
                    fake_segmap = fake_segmap * cloth_mask
                            
                    N, _, iH, iW = c_paired.shape
                    N, flow_iH, flow_iW, _ = flow_list_tvob[-1].shape

                    flow_tvob = F.interpolate(flow_list_tvob[-1].permute(0, 3, 1, 2), size=(iH, iW), mode='bilinear').permute(0, 2, 3, 1)
                    flow_tvob_norm = torch.cat([flow_tvob[:, :, :, 0:1] / ((flow_iW - 1.0) / 2.0), flow_tvob[:, :, :, 1:2] / ((flow_iH - 1.0) / 2.0)], 3)

                    grid = make_grid(N, iH, iW)
                    grid_3d = make_grid_3d(N, iH, iW)

                    warped_grid_tvob = grid + flow_tvob_norm
                    warped_cloth_tvob = F.grid_sample(c_paired, warped_grid_tvob, padding_mode='border')
                    warped_clothmask_tvob = F.grid_sample(cm, warped_grid_tvob, padding_mode='border')

                    flow_taco = F.interpolate(flow_list_taco[-1].permute(0, 4, 1, 2, 3), size=(2, iH, iW), mode='trilinear').permute(0, 2, 3, 4, 1)
                    flow_taco_norm = torch.cat([flow_taco[:, :, :, :, 0:1] / ((flow_iW - 1.0) / 2.0), flow_taco[:, :, :, :, 1:2] / ((flow_iH - 1.0) / 2.0), flow_taco[:, :, :, :, 2:3]], 4)
                    warped_cloth_tvob = warped_cloth_tvob.unsqueeze(2)
                    warped_cloth_paired_taco = F.grid_sample(torch.cat((warped_cloth_tvob, torch.zeros_like(warped_cloth_tvob).cuda()), dim=2), flow_taco_norm + grid_3d, padding_mode='border')
                    warped_cloth_paired_taco = warped_cloth_paired_taco[:,:,0,:,:]

                    warped_clothmask_tvob = warped_clothmask_tvob.unsqueeze(2)
                    warped_clothmask_taco = F.grid_sample(torch.cat((warped_clothmask_tvob, torch.zeros_like(warped_clothmask_tvob).cuda()), dim=2), flow_taco_norm + grid_3d, padding_mode='border')
                    warped_clothmask_taco = warped_clothmask_taco[:,:,0,:,:]

                    fake_parse_gauss = gauss(F.interpolate(fake_segmap, size=(iH, iW), mode='bilinear'))
                    fake_parse = fake_parse_gauss.argmax(dim=1)[:, None]

                    if opt.occlusion:
                        warped_clothmask_taco = remove_overlap(F.softmax(fake_parse_gauss, dim=1), warped_clothmask_taco)
                        warped_cloth_paired_taco = warped_cloth_paired_taco * warped_clothmask_taco + torch.ones_like(warped_cloth_paired_taco) * (1-warped_clothmask_taco)
                        warped_cloth_paired_taco = warped_cloth_paired_taco.detach()
                        
                    old_parse = torch.FloatTensor(fake_parse.size(0), 13, opt.fine_height, opt.fine_width).zero_().cuda()
                    old_parse.scatter_(1, fake_parse, 1.0)

                    labels = {
                        0:  ['background',  [0]],
                        1:  ['paste',       [2, 4, 7, 8, 9, 10, 11]],
                        2:  ['upper',       [3]],
                        3:  ['hair',        [1]],
                        4:  ['left_arm',    [5]],
                        5:  ['right_arm',   [6]],
                        6:  ['noise',       [12]]
                    }
                    parse = torch.FloatTensor(fake_parse.size(0), 7, opt.fine_height, opt.fine_width).zero_().cuda()
                    for i in range(len(labels)):
                        for label in labels[i][1]:
                            parse[:, i] += old_parse[:, label]
                            
                    parse = parse.detach()
                
                    if opt.composition_mask:
                        output_paired_rendered, output_paired_comp = generator(torch.cat((agnostic, pose, warped_cloth_paired_taco), dim=1), parse)
                        output_paired_comp1 = output_paired_comp * warped_clothmask_taco
                        output_paired_comp = parse[:,2:3,:,:] * output_paired_comp1
                        output_paired = warped_cloth_paired_taco * output_paired_comp + output_paired_rendered * (1 - output_paired_comp)
                    else:
                        output_paired = generator(torch.cat((agnostic, pose, warped_cloth_paired_taco), dim=1), parse)

                    avg_distance += model.forward(T2(im), T2(output_paired))
                    
            avg_distance = avg_distance / 500
            print(f"LPIPS: {avg_distance}")
            generator.train()
            tocg.train()

        if (step + 1) % opt.display_count == 0:
            t = time.time() - iter_start_time
            print("step: %8d, time: %.3f, G_loss: %.4f, G_adv_loss: %.4f, D_loss: %.4f, D_fake_loss: %.4f, D_real_loss: %.4f"
                  % (step + 1, t, loss_gen.item(), G_losses['GAN'].mean().item(), loss_dis.item(),
                     D_losses['D_Fake'].mean().item(), D_losses['D_Real'].mean().item()), flush=True)

        if (step + 1) % opt.save_count == 0:
            checkpoint = {
                'step': step + 1,
                'generator_state_dict': generator.state_dict(),
                'discriminator_state_dict': discriminator.state_dict(),
                'tocg_state_dict': tocg.state_dict(),  # Save tocg state
                'optimizer_gen_state_dict': optimizer_gen.state_dict(),
                'optimizer_dis_state_dict': optimizer_dis.state_dict(),
                'scheduler_gen_state_dict': scheduler_gen.state_dict(),
                'scheduler_dis_state_dict': scheduler_dis.state_dict(),
            }
            torch.save(checkpoint, checkpoint_path)

        if (step + 1) % 1000 == 0:
            scheduler_gen.step()
            scheduler_dis.step()

def main():
    opt = get_opt()
    print(opt)
    print("Start to train %s!" % opt.name)

    os.makedirs('sample_fs_toig', exist_ok=True)
    os.makedirs(os.path.join(opt.checkpoint_dir, opt.name), exist_ok=True)

    train_dataset = CPDataset(opt)
    train_loader = CPDataLoader(opt, train_dataset)
    
    opt.batch_size = 1
    opt.dataroot = opt.test_dataroot
    opt.datamode = 'test'
    opt.data_list = opt.test_data_list
    test_dataset = CPDatasetTest(opt)
    test_dataset = Subset(test_dataset, np.arange(500))
    test_loader = CPDataLoader(opt, test_dataset)
    
    input1_nc = 4
    input2_nc = opt.semantic_nc + 3
    tocg = ConditionGenerator(opt, input1_nc=input1_nc, input2_nc=input2_nc, output_nc=13, ngf=opt.cond_G_ngf, norm_layer=nn.BatchNorm2d, num_layers=opt.cond_G_num_layers)
    load_checkpoint(tocg, opt.tocg_checkpoint)

    generator = SPADEGenerator(opt, 3+3+3)
    generator.print_network()
    if len(opt.gpu_ids) > 0:
        assert(torch.cuda.is_available())
        generator.cuda()
    generator.init_weights(opt.init_type, opt.init_variance)

    discriminator = None
    if opt.composition_mask:
        discriminator = create_network(MultiscaleDiscriminator, opt)
    else:
        discriminator = ProjectedDiscriminator(interp224=False)

    model = models.PerceptualLoss(model='net-lin',net='alex',use_gpu=True)

    if opt.gen_checkpoint and os.path.exists(opt.gen_checkpoint):
        load_checkpoint(generator, opt.gen_checkpoint)
    if opt.dis_checkpoint and os.path.exists(opt.dis_checkpoint):
        load_checkpoint(discriminator, opt.dis_checkpoint)

    train(opt, train_loader, test_loader, tocg, generator, discriminator, model)

    save_checkpoint(generator, os.path.join(opt.checkpoint_dir, opt.name, 'gen_model_final.pth'))
    save_checkpoint(discriminator, os.path.join(opt.checkpoint_dir, opt.name, 'dis_model_final.pth'))
    save_checkpoint(tocg, os.path.join(opt.checkpoint_dir, opt.name, 'tocg_model_final.pth'))

    print("Finished training %s!" % opt.name)

if __name__ == "__main__":
    main()