File size: 12,539 Bytes
9dd3461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import math
import torch
from torch import Tensor

from .optimizer import Optimizer
from typing import List, Optional

__all__ = ['RAdam', 'radam']

class RAdam(Optimizer):
    r"""Implements RAdam algorithm.

    .. math::
       \begin{aligned}
            &\rule{110mm}{0.4pt}                                                                 \\
            &\textbf{input}      : \gamma \text{ (lr)}, \: \beta_1, \beta_2
                \text{ (betas)}, \: \theta_0 \text{ (params)}, \:f(\theta) \text{ (objective)}, \:
                \lambda \text{ (weightdecay)},                                                   \\
            &\hspace{13mm} \epsilon \text{ (epsilon)}                                            \\
            &\textbf{initialize} :  m_0 \leftarrow 0 \text{ ( first moment)},
                v_0 \leftarrow 0 \text{ ( second moment)},                                       \\
            &\hspace{18mm} \rho_{\infty} \leftarrow 2/(1-\beta_2) -1                      \\[-1.ex]
            &\rule{110mm}{0.4pt}  \\
            &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do}                         \\
            &\hspace{6mm}g_t           \leftarrow   \nabla_{\theta} f_t (\theta_{t-1})           \\
            &\hspace{5mm} \textbf{if} \: \lambda \neq 0                                          \\
            &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1}                             \\
            &\hspace{6mm}m_t           \leftarrow   \beta_1 m_{t-1} + (1 - \beta_1) g_t          \\
            &\hspace{6mm}v_t           \leftarrow   \beta_2 v_{t-1} + (1-\beta_2) g^2_t          \\
            &\hspace{6mm}\widehat{m_t} \leftarrow   m_t/\big(1-\beta_1^t \big)                   \\
            &\hspace{6mm}\rho_t \leftarrow \rho_{\infty} -
                2 t \beta^t_2 /\big(1-\beta_2^t \big)                                    \\[0.1.ex]
            &\hspace{6mm}\textbf{if} \: \rho_t > 5                                               \\
            &\hspace{12mm} l_t \leftarrow \sqrt{ (1-\beta^t_2) / \big( v_t +\epsilon \big) }     \\
            &\hspace{12mm} r_t \leftarrow
      \sqrt{\frac{(\rho_t-4)(\rho_t-2)\rho_{\infty}}{(\rho_{\infty}-4)(\rho_{\infty}-2) \rho_t}} \\
            &\hspace{12mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t} r_t l_t        \\
            &\hspace{6mm}\textbf{else}                                                           \\
            &\hspace{12mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t}                \\
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
            &\bf{return} \:  \theta_t                                                     \\[-1.ex]
            &\rule{110mm}{0.4pt}                                                          \\[-1.ex]
       \end{aligned}

    For further details regarding the algorithm we refer to `On the variance of the adaptive learning rate and beyond`_.

    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float, optional): learning rate (default: 1e-3)
        betas (Tuple[float, float], optional): coefficients used for computing
            running averages of gradient and its square (default: (0.9, 0.999))
        eps (float, optional): term added to the denominator to improve
            numerical stability (default: 1e-8)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        foreach (bool, optional): whether foreach implementation of optimizer
            is used (default: None)

    .. _On the variance of the adaptive learning rate and beyond:
        https://arxiv.org/abs/1908.03265
    """

    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
                 weight_decay=0, foreach: Optional[bool] = None):
        if not 0.0 <= lr:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= eps:
            raise ValueError("Invalid epsilon value: {}".format(eps))
        if not 0.0 <= betas[0] < 1.0:
            raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
        if not 0.0 <= betas[1] < 1.0:
            raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
        if not 0.0 <= weight_decay:
            raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
        defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay,
                        foreach=foreach)
        super(RAdam, self).__init__(params, defaults)

    def __setstate__(self, state):
        super().__setstate__(state)
        for group in self.param_groups:
            group.setdefault('foreach', None)
        state_values = list(self.state.values())
        step_is_tensor = (len(state_values) != 0) and torch.is_tensor(state_values[0]['step'])
        if not step_is_tensor:
            for s in state_values:
                s['step'] = torch.tensor(float(s['step']))

    @torch.no_grad()
    def step(self, closure=None):
        """Performs a single optimization step.

        Args:
            closure (Callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            with torch.enable_grad():
                loss = closure()

        for group in self.param_groups:
            params_with_grad = []
            grads = []
            exp_avgs = []
            exp_avg_sqs = []
            state_steps = []
            beta1, beta2 = group['betas']

            for p in group['params']:
                if p.grad is not None:
                    params_with_grad.append(p)
                    if p.grad.is_sparse:
                        raise RuntimeError('RAdam does not support sparse gradients')
                    grads.append(p.grad)

                    state = self.state[p]
                    # Lazy state initialization
                    if len(state) == 0:
                        state['step'] = torch.tensor(0.)
                        # Exponential moving average of gradient values
                        state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
                        # Exponential moving average of squared gradient values
                        state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)

                    exp_avgs.append(state['exp_avg'])
                    exp_avg_sqs.append(state['exp_avg_sq'])
                    state_steps.append(state['step'])

            radam(params_with_grad,
                  grads,
                  exp_avgs,
                  exp_avg_sqs,
                  state_steps,
                  beta1=beta1,
                  beta2=beta2,
                  lr=group['lr'],
                  weight_decay=group['weight_decay'],
                  eps=group['eps'],
                  foreach=group['foreach'])

        return loss


def radam(params: List[Tensor],
          grads: List[Tensor],
          exp_avgs: List[Tensor],
          exp_avg_sqs: List[Tensor],
          state_steps: List[Tensor],
          # kwonly args with defaults are not supported by functions compiled with torchscript issue #70627
          # setting this as kwarg for now as functional API is compiled by torch/distributed/optim
          foreach: bool = None,
          *,
          beta1: float,
          beta2: float,
          lr: float,
          weight_decay: float,
          eps: float):
    r"""Functional API that performs RAdam algorithm computation.

    See :class:`~torch.optim.RAdam` for details.
    """

    if not all(isinstance(t, torch.Tensor) for t in state_steps):
        raise RuntimeError("API has changed, `state_steps` argument must contain a list of singleton tensors")

    if foreach is None:
        # Placeholder for more complex foreach logic to be added when value is not set
        foreach = False

    if foreach and torch.jit.is_scripting():
        raise RuntimeError('torch.jit.script not supported with foreach optimizers')

    if foreach and not torch.jit.is_scripting():
        func = _multi_tensor_radam
    else:
        func = _single_tensor_radam

    func(params,
         grads,
         exp_avgs,
         exp_avg_sqs,
         state_steps,
         beta1=beta1,
         beta2=beta2,
         lr=lr,
         weight_decay=weight_decay,
         eps=eps)


def _single_tensor_radam(params: List[Tensor],
                         grads: List[Tensor],
                         exp_avgs: List[Tensor],
                         exp_avg_sqs: List[Tensor],
                         state_steps: List[Tensor],
                         *,
                         beta1: float,
                         beta2: float,
                         lr: float,
                         weight_decay: float,
                         eps: float):

    for i, param in enumerate(params):
        grad = grads[i]
        exp_avg = exp_avgs[i]
        exp_avg_sq = exp_avg_sqs[i]
        step_t = state_steps[i]
        # update step
        step_t += 1
        step = step_t.item()

        bias_correction1 = 1 - beta1 ** step
        bias_correction2 = 1 - beta2 ** step

        if weight_decay != 0:
            grad = grad.add(param, alpha=weight_decay)

        # Decay the first and second moment running average coefficient
        exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
        exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)

        # correcting bias for the first moving moment
        bias_corrected_exp_avg = exp_avg / bias_correction1

        # maximum length of the approximated SMA
        rho_inf = 2 / (1 - beta2) - 1
        # compute the length of the approximated SMA
        rho_t = rho_inf - 2 * step * (beta2 ** step) / bias_correction2

        if rho_t > 5.:
            # Compute the variance rectification term and update parameters accordingly
            rect = math.sqrt((rho_t - 4) * (rho_t - 2) * rho_inf / ((rho_inf - 4) * (rho_inf - 2) * rho_t))
            adaptive_lr = math.sqrt(bias_correction2) / exp_avg_sq.sqrt().add_(eps)

            param.add_(bias_corrected_exp_avg * lr * adaptive_lr * rect, alpha=-1.0)
        else:
            param.add_(bias_corrected_exp_avg * lr, alpha=-1.0)


def _multi_tensor_radam(params: List[Tensor],
                        grads: List[Tensor],
                        exp_avgs: List[Tensor],
                        exp_avg_sqs: List[Tensor],
                        state_steps: List[Tensor],
                        *,
                        beta1: float,
                        beta2: float,
                        lr: float,
                        weight_decay: float,
                        eps: float):

    if len(params) == 0:
        return

    # Update steps
    torch._foreach_add_(state_steps, 1)

    # maximum length of the approximated SMA
    rho_inf = 2 / (1 - beta2) - 1
    # compute the length of the approximated SMA
    rho_t_list = [rho_inf - 2 * step.item() * (beta2 ** step.item()) / (1 - beta2 ** step.item()) for step in state_steps]

    bias_correction1 = [1 - beta1 ** step.item() for step in state_steps]
    bias_correction2 = [1 - beta2 ** step.item() for step in state_steps]
    if weight_decay != 0:
        torch._foreach_add_(grads, params, alpha=weight_decay)

    # Decay the first and second moment running average coefficient
    torch._foreach_mul_(exp_avgs, beta1)
    torch._foreach_add_(exp_avgs, grads, alpha=1 - beta1)

    torch._foreach_mul_(exp_avg_sqs, beta2)
    torch._foreach_addcmul_(exp_avg_sqs, grads, grads, 1 - beta2)

    rect = [math.sqrt((rho_t - 4) * (rho_t - 2) * rho_inf / ((rho_inf - 4) * (rho_inf - 2) * rho_t))
            if rho_t > 5 else 0 for rho_t in rho_t_list]
    unrectified = [0 if rect > 0 else 1. for rect in rect]

    exp_avg_sq_sqrt = torch._foreach_sqrt(exp_avg_sqs)
    bias_correction_sqrt = [math.sqrt(bc) for bc in bias_correction2]
    denom = torch._foreach_div(exp_avg_sq_sqrt, bias_correction_sqrt)
    step_size = [(lr * rect / bc) * -1 for rect, bc in zip(rect, bias_correction1)]
    torch._foreach_addcdiv_(params, exp_avgs, denom, step_size)

    denom = [torch.ones_like(exp_av, memory_format=torch.preserve_format) for exp_av in exp_avgs]
    step_size = [(lr * rect / bc) * -1 for rect, bc in zip(unrectified, bias_correction1)]
    torch._foreach_addcdiv_(params, exp_avgs, denom, step_size)