File size: 17,260 Bytes
9dd3461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
import torch
from functools import reduce
from .optimizer import Optimizer

__all__ = ['LBFGS']

def _cubic_interpolate(x1, f1, g1, x2, f2, g2, bounds=None):
    # ported from https://github.com/torch/optim/blob/master/polyinterp.lua
    # Compute bounds of interpolation area
    if bounds is not None:
        xmin_bound, xmax_bound = bounds
    else:
        xmin_bound, xmax_bound = (x1, x2) if x1 <= x2 else (x2, x1)

    # Code for most common case: cubic interpolation of 2 points
    #   w/ function and derivative values for both
    # Solution in this case (where x2 is the farthest point):
    #   d1 = g1 + g2 - 3*(f1-f2)/(x1-x2);
    #   d2 = sqrt(d1^2 - g1*g2);
    #   min_pos = x2 - (x2 - x1)*((g2 + d2 - d1)/(g2 - g1 + 2*d2));
    #   t_new = min(max(min_pos,xmin_bound),xmax_bound);
    d1 = g1 + g2 - 3 * (f1 - f2) / (x1 - x2)
    d2_square = d1**2 - g1 * g2
    if d2_square >= 0:
        d2 = d2_square.sqrt()
        if x1 <= x2:
            min_pos = x2 - (x2 - x1) * ((g2 + d2 - d1) / (g2 - g1 + 2 * d2))
        else:
            min_pos = x1 - (x1 - x2) * ((g1 + d2 - d1) / (g1 - g2 + 2 * d2))
        return min(max(min_pos, xmin_bound), xmax_bound)
    else:
        return (xmin_bound + xmax_bound) / 2.


def _strong_wolfe(obj_func,
                  x,
                  t,
                  d,
                  f,
                  g,
                  gtd,
                  c1=1e-4,
                  c2=0.9,
                  tolerance_change=1e-9,
                  max_ls=25):
    # ported from https://github.com/torch/optim/blob/master/lswolfe.lua
    d_norm = d.abs().max()
    g = g.clone(memory_format=torch.contiguous_format)
    # evaluate objective and gradient using initial step
    f_new, g_new = obj_func(x, t, d)
    ls_func_evals = 1
    gtd_new = g_new.dot(d)

    # bracket an interval containing a point satisfying the Wolfe criteria
    t_prev, f_prev, g_prev, gtd_prev = 0, f, g, gtd
    done = False
    ls_iter = 0
    while ls_iter < max_ls:
        # check conditions
        if f_new > (f + c1 * t * gtd) or (ls_iter > 1 and f_new >= f_prev):
            bracket = [t_prev, t]
            bracket_f = [f_prev, f_new]
            bracket_g = [g_prev, g_new.clone(memory_format=torch.contiguous_format)]
            bracket_gtd = [gtd_prev, gtd_new]
            break

        if abs(gtd_new) <= -c2 * gtd:
            bracket = [t]
            bracket_f = [f_new]
            bracket_g = [g_new]
            done = True
            break

        if gtd_new >= 0:
            bracket = [t_prev, t]
            bracket_f = [f_prev, f_new]
            bracket_g = [g_prev, g_new.clone(memory_format=torch.contiguous_format)]
            bracket_gtd = [gtd_prev, gtd_new]
            break

        # interpolate
        min_step = t + 0.01 * (t - t_prev)
        max_step = t * 10
        tmp = t
        t = _cubic_interpolate(
            t_prev,
            f_prev,
            gtd_prev,
            t,
            f_new,
            gtd_new,
            bounds=(min_step, max_step))

        # next step
        t_prev = tmp
        f_prev = f_new
        g_prev = g_new.clone(memory_format=torch.contiguous_format)
        gtd_prev = gtd_new
        f_new, g_new = obj_func(x, t, d)
        ls_func_evals += 1
        gtd_new = g_new.dot(d)
        ls_iter += 1

    # reached max number of iterations?
    if ls_iter == max_ls:
        bracket = [0, t]
        bracket_f = [f, f_new]
        bracket_g = [g, g_new]

    # zoom phase: we now have a point satisfying the criteria, or
    # a bracket around it. We refine the bracket until we find the
    # exact point satisfying the criteria
    insuf_progress = False
    # find high and low points in bracket
    low_pos, high_pos = (0, 1) if bracket_f[0] <= bracket_f[-1] else (1, 0)
    while not done and ls_iter < max_ls:
        # line-search bracket is so small
        if abs(bracket[1] - bracket[0]) * d_norm < tolerance_change:
            break

        # compute new trial value
        t = _cubic_interpolate(bracket[0], bracket_f[0], bracket_gtd[0],
                               bracket[1], bracket_f[1], bracket_gtd[1])

        # test that we are making sufficient progress:
        # in case `t` is so close to boundary, we mark that we are making
        # insufficient progress, and if
        #   + we have made insufficient progress in the last step, or
        #   + `t` is at one of the boundary,
        # we will move `t` to a position which is `0.1 * len(bracket)`
        # away from the nearest boundary point.
        eps = 0.1 * (max(bracket) - min(bracket))
        if min(max(bracket) - t, t - min(bracket)) < eps:
            # interpolation close to boundary
            if insuf_progress or t >= max(bracket) or t <= min(bracket):
                # evaluate at 0.1 away from boundary
                if abs(t - max(bracket)) < abs(t - min(bracket)):
                    t = max(bracket) - eps
                else:
                    t = min(bracket) + eps
                insuf_progress = False
            else:
                insuf_progress = True
        else:
            insuf_progress = False

        # Evaluate new point
        f_new, g_new = obj_func(x, t, d)
        ls_func_evals += 1
        gtd_new = g_new.dot(d)
        ls_iter += 1

        if f_new > (f + c1 * t * gtd) or f_new >= bracket_f[low_pos]:
            # Armijo condition not satisfied or not lower than lowest point
            bracket[high_pos] = t
            bracket_f[high_pos] = f_new
            bracket_g[high_pos] = g_new.clone(memory_format=torch.contiguous_format)
            bracket_gtd[high_pos] = gtd_new
            low_pos, high_pos = (0, 1) if bracket_f[0] <= bracket_f[1] else (1, 0)
        else:
            if abs(gtd_new) <= -c2 * gtd:
                # Wolfe conditions satisfied
                done = True
            elif gtd_new * (bracket[high_pos] - bracket[low_pos]) >= 0:
                # old high becomes new low
                bracket[high_pos] = bracket[low_pos]
                bracket_f[high_pos] = bracket_f[low_pos]
                bracket_g[high_pos] = bracket_g[low_pos]
                bracket_gtd[high_pos] = bracket_gtd[low_pos]

            # new point becomes new low
            bracket[low_pos] = t
            bracket_f[low_pos] = f_new
            bracket_g[low_pos] = g_new.clone(memory_format=torch.contiguous_format)
            bracket_gtd[low_pos] = gtd_new

    # return stuff
    t = bracket[low_pos]
    f_new = bracket_f[low_pos]
    g_new = bracket_g[low_pos]
    return f_new, g_new, t, ls_func_evals


class LBFGS(Optimizer):
    """Implements L-BFGS algorithm, heavily inspired by `minFunc
    <https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html>`_.

    .. warning::
        This optimizer doesn't support per-parameter options and parameter
        groups (there can be only one).

    .. warning::
        Right now all parameters have to be on a single device. This will be
        improved in the future.

    .. note::
        This is a very memory intensive optimizer (it requires additional
        ``param_bytes * (history_size + 1)`` bytes). If it doesn't fit in memory
        try reducing the history size, or use a different algorithm.

    Args:
        lr (float): learning rate (default: 1)
        max_iter (int): maximal number of iterations per optimization step
            (default: 20)
        max_eval (int): maximal number of function evaluations per optimization
            step (default: max_iter * 1.25).
        tolerance_grad (float): termination tolerance on first order optimality
            (default: 1e-5).
        tolerance_change (float): termination tolerance on function
            value/parameter changes (default: 1e-9).
        history_size (int): update history size (default: 100).
        line_search_fn (str): either 'strong_wolfe' or None (default: None).
    """

    def __init__(self,
                 params,
                 lr=1,
                 max_iter=20,
                 max_eval=None,
                 tolerance_grad=1e-7,
                 tolerance_change=1e-9,
                 history_size=100,
                 line_search_fn=None):
        if max_eval is None:
            max_eval = max_iter * 5 // 4
        defaults = dict(
            lr=lr,
            max_iter=max_iter,
            max_eval=max_eval,
            tolerance_grad=tolerance_grad,
            tolerance_change=tolerance_change,
            history_size=history_size,
            line_search_fn=line_search_fn)
        super(LBFGS, self).__init__(params, defaults)

        if len(self.param_groups) != 1:
            raise ValueError("LBFGS doesn't support per-parameter options "
                             "(parameter groups)")

        self._params = self.param_groups[0]['params']
        self._numel_cache = None

    def _numel(self):
        if self._numel_cache is None:
            self._numel_cache = reduce(lambda total, p: total + p.numel(), self._params, 0)
        return self._numel_cache

    def _gather_flat_grad(self):
        views = []
        for p in self._params:
            if p.grad is None:
                view = p.new(p.numel()).zero_()
            elif p.grad.is_sparse:
                view = p.grad.to_dense().view(-1)
            else:
                view = p.grad.view(-1)
            views.append(view)
        return torch.cat(views, 0)

    def _add_grad(self, step_size, update):
        offset = 0
        for p in self._params:
            numel = p.numel()
            # view as to avoid deprecated pointwise semantics
            p.add_(update[offset:offset + numel].view_as(p), alpha=step_size)
            offset += numel
        assert offset == self._numel()

    def _clone_param(self):
        return [p.clone(memory_format=torch.contiguous_format) for p in self._params]

    def _set_param(self, params_data):
        for p, pdata in zip(self._params, params_data):
            p.copy_(pdata)

    def _directional_evaluate(self, closure, x, t, d):
        self._add_grad(t, d)
        loss = float(closure())
        flat_grad = self._gather_flat_grad()
        self._set_param(x)
        return loss, flat_grad

    @torch.no_grad()
    def step(self, closure):
        """Performs a single optimization step.

        Args:
            closure (Callable): A closure that reevaluates the model
                and returns the loss.
        """
        assert len(self.param_groups) == 1

        # Make sure the closure is always called with grad enabled
        closure = torch.enable_grad()(closure)

        group = self.param_groups[0]
        lr = group['lr']
        max_iter = group['max_iter']
        max_eval = group['max_eval']
        tolerance_grad = group['tolerance_grad']
        tolerance_change = group['tolerance_change']
        line_search_fn = group['line_search_fn']
        history_size = group['history_size']

        # NOTE: LBFGS has only global state, but we register it as state for
        # the first param, because this helps with casting in load_state_dict
        state = self.state[self._params[0]]
        state.setdefault('func_evals', 0)
        state.setdefault('n_iter', 0)

        # evaluate initial f(x) and df/dx
        orig_loss = closure()
        loss = float(orig_loss)
        current_evals = 1
        state['func_evals'] += 1

        flat_grad = self._gather_flat_grad()
        opt_cond = flat_grad.abs().max() <= tolerance_grad

        # optimal condition
        if opt_cond:
            return orig_loss

        # tensors cached in state (for tracing)
        d = state.get('d')
        t = state.get('t')
        old_dirs = state.get('old_dirs')
        old_stps = state.get('old_stps')
        ro = state.get('ro')
        H_diag = state.get('H_diag')
        prev_flat_grad = state.get('prev_flat_grad')
        prev_loss = state.get('prev_loss')

        n_iter = 0
        # optimize for a max of max_iter iterations
        while n_iter < max_iter:
            # keep track of nb of iterations
            n_iter += 1
            state['n_iter'] += 1

            ############################################################
            # compute gradient descent direction
            ############################################################
            if state['n_iter'] == 1:
                d = flat_grad.neg()
                old_dirs = []
                old_stps = []
                ro = []
                H_diag = 1
            else:
                # do lbfgs update (update memory)
                y = flat_grad.sub(prev_flat_grad)
                s = d.mul(t)
                ys = y.dot(s)  # y*s
                if ys > 1e-10:
                    # updating memory
                    if len(old_dirs) == history_size:
                        # shift history by one (limited-memory)
                        old_dirs.pop(0)
                        old_stps.pop(0)
                        ro.pop(0)

                    # store new direction/step
                    old_dirs.append(y)
                    old_stps.append(s)
                    ro.append(1. / ys)

                    # update scale of initial Hessian approximation
                    H_diag = ys / y.dot(y)  # (y*y)

                # compute the approximate (L-BFGS) inverse Hessian
                # multiplied by the gradient
                num_old = len(old_dirs)

                if 'al' not in state:
                    state['al'] = [None] * history_size
                al = state['al']

                # iteration in L-BFGS loop collapsed to use just one buffer
                q = flat_grad.neg()
                for i in range(num_old - 1, -1, -1):
                    al[i] = old_stps[i].dot(q) * ro[i]
                    q.add_(old_dirs[i], alpha=-al[i])

                # multiply by initial Hessian
                # r/d is the final direction
                d = r = torch.mul(q, H_diag)
                for i in range(num_old):
                    be_i = old_dirs[i].dot(r) * ro[i]
                    r.add_(old_stps[i], alpha=al[i] - be_i)

            if prev_flat_grad is None:
                prev_flat_grad = flat_grad.clone(memory_format=torch.contiguous_format)
            else:
                prev_flat_grad.copy_(flat_grad)
            prev_loss = loss

            ############################################################
            # compute step length
            ############################################################
            # reset initial guess for step size
            if state['n_iter'] == 1:
                t = min(1., 1. / flat_grad.abs().sum()) * lr
            else:
                t = lr

            # directional derivative
            gtd = flat_grad.dot(d)  # g * d

            # directional derivative is below tolerance
            if gtd > -tolerance_change:
                break

            # optional line search: user function
            ls_func_evals = 0
            if line_search_fn is not None:
                # perform line search, using user function
                if line_search_fn != "strong_wolfe":
                    raise RuntimeError("only 'strong_wolfe' is supported")
                else:
                    x_init = self._clone_param()

                    def obj_func(x, t, d):
                        return self._directional_evaluate(closure, x, t, d)

                    loss, flat_grad, t, ls_func_evals = _strong_wolfe(
                        obj_func, x_init, t, d, loss, flat_grad, gtd)
                self._add_grad(t, d)
                opt_cond = flat_grad.abs().max() <= tolerance_grad
            else:
                # no line search, simply move with fixed-step
                self._add_grad(t, d)
                if n_iter != max_iter:
                    # re-evaluate function only if not in last iteration
                    # the reason we do this: in a stochastic setting,
                    # no use to re-evaluate that function here
                    with torch.enable_grad():
                        loss = float(closure())
                    flat_grad = self._gather_flat_grad()
                    opt_cond = flat_grad.abs().max() <= tolerance_grad
                    ls_func_evals = 1

            # update func eval
            current_evals += ls_func_evals
            state['func_evals'] += ls_func_evals

            ############################################################
            # check conditions
            ############################################################
            if n_iter == max_iter:
                break

            if current_evals >= max_eval:
                break

            # optimal condition
            if opt_cond:
                break

            # lack of progress
            if d.mul(t).abs().max() <= tolerance_change:
                break

            if abs(loss - prev_loss) < tolerance_change:
                break

        state['d'] = d
        state['t'] = t
        state['old_dirs'] = old_dirs
        state['old_stps'] = old_stps
        state['ro'] = ro
        state['H_diag'] = H_diag
        state['prev_flat_grad'] = prev_flat_grad
        state['prev_loss'] = prev_loss

        return orig_loss