File size: 18,244 Bytes
9dd3461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
from torch import Tensor
from torch.types import _size, _dtype
from typing import Any, Optional, Tuple, Dict, List, Callable, Sequence, Union
from .common_types import _ratio_any_t, _size_any_t, _size_1_t, _size_2_t, _size_3_t, _size_2_opt_t, _size_3_opt_t

# 'TypedDict' is a new accepted type that represents a dictionary with a fixed set of allowed keys.
# It is standards-track but not in `typing` yet. We leave this hear to be uncommented once the feature
# is wide-spread.

# from mypy_extensions import TypedDict

# GRID_SAMPLE_INTERPOLATION_MODES = TypedDict('GRID_SAMPLE_INTERPOLATION_MODES', {'bilinear': int, 'nearest': int})
# GRID_SAMPLE_PADDING_MODES = TypedDict('GRID_SAMPLE_PADDING_MODES', {'zeros': int, 'border': int, 'reflection': int})

GRID_SAMPLE_INTERPOLATION_MODES = Dict[str, int]
GRID_SAMPLE_PADDING_MODES = Dict[str, int]


# These stubs were generated by running stubgen (`stubgen --parse-only functional.py`), followed by manual cleaning.
#
# The 'BroadcastingList{1,2,3}' types were replaced by `_size` or _output_ratio, as appropriate.
# This was necessary since the JIT uses BroadcastingList* types but static checking with mypy etc requires a `Sequence`
# type. There is no way to express the expected lengths of these lists in the current Python typing system.
#
# Functions created via `_add_docstr` in `functional.py` where merely typed as `Any` by `stubgen`, so those were
# deleted from the stub and replaced by generated declarations. See `gen_pyi` for the implementation of the code
# generation logic for those functions. In the future, it might be worth looking into using the mypy plugin system
# to encode the type semantics of `_add_docstr`, should that system ever become widespread.
def fractional_max_pool2d_with_indices(input: Tensor, kernel_size: _size, output_size: Optional[_size] = ...,
                                       output_ratio: Optional[_ratio_any_t] = ..., return_indices: bool = ...,
                                       _random_samples: Optional[Tensor] = ...) -> Tuple[Tensor, Tensor]: ...


def fractional_max_pool3d_with_indices(input: Tensor, kernel_size: _size, output_size: Optional[_size] = ...,
                                       output_ratio: Optional[_ratio_any_t] = ..., return_indices: bool = ...,
                                       _random_samples: Optional[Tensor] = ...) -> Tuple[Tensor, Tensor]: ...


def max_pool1d_with_indices(input: Tensor, kernel_size: _size, stride: Optional[_size] = ..., padding: _size = ...,
                            dilation: _size = ..., ceil_mode: bool = ..., return_indices: bool = ...) -> Tuple[
    Tensor, Tensor]: ...


def max_pool2d_with_indices(input: Tensor, kernel_size: _size, stride: Optional[_size] = ..., padding: _size = ...,
                            dilation: _size = ..., ceil_mode: bool = ..., return_indices: bool = ...) -> Tuple[
    Tensor, Tensor]: ...


def max_pool3d_with_indices(input: Tensor, kernel_size: _size, stride: Optional[_size] = ..., padding: _size = ...,
                            dilation: _size = ..., ceil_mode: bool = ..., return_indices: bool = ...) -> Tuple[
    Tensor, Tensor]: ...


def max_unpool1d(input: Tensor, indices: Tensor, kernel_size: _size, stride: Optional[_size] = ...,
                 padding: _size = ..., output_size: Optional[_size] = ...) -> Tensor: ...


def max_unpool2d(input: Tensor, indices: Tensor, kernel_size: _size, stride: Optional[_size] = ...,
                 padding: _size = ..., output_size: Optional[_size] = ...) -> Tensor: ...


def max_unpool3d(input: Tensor, indices: Tensor, kernel_size: _size, stride: Optional[_size] = ...,
                 padding: _size = ..., output_size: Optional[_size] = ...) -> Tensor: ...


def lp_pool1d(input: Tensor, norm_type: float, kernel_size: _size_1_t, stride: Union[Optional[_size], Optional[int]] = ...,
              ceil_mode: bool = ...) -> Tensor: ...


def lp_pool2d(input: Tensor, norm_type: float, kernel_size: _size_2_t, stride: Union[Optional[_size], Optional[int]] = ...,
              ceil_mode: bool = ...) -> Tensor: ...


def adaptive_max_pool1d_with_indices(input: Tensor, output_size: _size, return_indices: bool = ...) -> Tuple[
    Tensor, Tensor]: ...


def adaptive_max_pool2d_with_indices(input: Tensor, output_size: _size_2_opt_t, return_indices: bool = ...) -> Tuple[
    Tensor, Tensor]: ...


def adaptive_max_pool3d_with_indices(input: Tensor, output_size: _size_3_opt_t, return_indices: bool = ...) -> Tuple[
    Tensor, Tensor]: ...


def adaptive_avg_pool1d(input: Tensor, output_size: _size_1_t) -> Tensor: ...


def adaptive_avg_pool2d(input: Tensor, output_size: _size_2_opt_t) -> Tensor: ...


def adaptive_avg_pool3d(input: Tensor, output_size: _size_3_opt_t) -> Tensor: ...


def dropout(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...


def alpha_dropout(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...


def dropout1d(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...


def dropout2d(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...


def dropout3d(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...


def feature_alpha_dropout(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...


def threshold(input: Tensor, threshold: float, value: float, inplace: bool = ...) -> Tensor: ...


def relu(input: Tensor, inplace: bool = ...) -> Tensor: ...


def glu(input: Tensor, dim: int = ...) -> Tensor: ...


def hardtanh(input: Tensor, min_val: float = ..., max_val: float = ..., inplace: bool = ...) -> Tensor: ...


def relu6(input: Tensor, inplace: bool = ...) -> Tensor: ...


def elu(input: Tensor, alpha: float = ..., inplace: bool = ...) -> Tensor: ...


def selu(input: Tensor, inplace: bool = ...) -> Tensor: ...


def celu(input: Tensor, alpha: float = ..., inplace: bool = ...) -> Tensor: ...


def leaky_relu(input: Tensor, negative_slope: float = ..., inplace: bool = ...) -> Tensor: ...


def prelu(input: Tensor, weight: Tensor) -> Tensor: ...


def rrelu(input: Tensor, lower: float = ..., upper: float = ..., training: bool = ...,
          inplace: bool = ...) -> Tensor: ...


def gelu(input: Any, approximate: str = ...): ...


def hardshrink(input: Tensor, lambd: float = ...) -> Tensor: ...


def tanhshrink(input: Any): ...


def softsign(input: Any): ...


def softmin(input: Tensor, dim: Optional[int] = ..., _stacklevel: int = ..., dtype: Optional[_dtype] = ...) -> Tensor: ...


def softmax(input: Tensor, dim: Optional[int] = ..., _stacklevel: int = ..., dtype: Optional[_dtype] = ...) -> Tensor: ...


def gumbel_softmax(logits: Tensor, tau: float = ..., hard: bool = ..., eps: float = ..., dim: int = ...) -> Tensor: ...


def log_softmax(input: Tensor, dim: Optional[int] = ..., _stacklevel: int = ...,
                dtype: Optional[_dtype] = ...) -> Tensor: ...


def tanh(input: Any): ...


def sigmoid(input: Any) -> Tensor: ...

def hardsigmoid(input: Tensor, inplace: bool = False) -> Tensor: ...


def linear(input: Tensor, weight: Tensor, bias: Optional[Tensor] = ...) -> Tensor: ...


def bilinear(input1: Tensor, input2: Tensor, weight: Tensor, bias: Optional[Tensor] = ...) -> Tensor: ...


def silu(input: Tensor, inplace: bool = False) -> Tensor: ...

def mish(input: Tensor, inplace: bool = False) -> Tensor: ...

def hardswish(input: Tensor, inplace: bool = False) -> Tensor: ...


def embedding(input: Tensor, weight: Tensor, padding_idx: Optional[int] = ..., max_norm: Optional[float] = ...,
              norm_type: float = ..., scale_grad_by_freq: bool = ..., sparse: bool = ...) -> Tensor: ...


def embedding_bag(input: Tensor, weight: Tensor, offsets: Optional[Tensor] = ..., max_norm: Optional[float] = ...,
                  norm_type: float = ..., scale_grad_by_freq: bool = ..., mode: str = ...,
                  sparse: bool = ..., per_sample_weights: Optional[Tensor] = ...,
                  include_last_offset: bool = ..., padding_idx: Optional[int] = ...) -> Tensor: ...

def batch_norm(input: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor],
               weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ..., training: bool = ...,
               momentum: float = ..., eps: float = ...) -> Tensor: ...


def instance_norm(input: Tensor, running_mean: Optional[Tensor] = ..., running_var: Optional[Tensor] = ...,
                  weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ..., use_input_stats: bool = ...,
                  momentum: float = ..., eps: float = ...) -> Tensor: ...


def layer_norm(input: Tensor, normalized_shape: Sequence[int], weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ...,
               eps: float = ...) -> Tensor: ...


def group_norm(input: Tensor, num_groups: int, weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ...,
               eps: float = ...) -> Tensor: ...


def local_response_norm(input: Tensor, size: int, alpha: float = ..., beta: float = ..., k: float = ...) -> Tensor: ...


def ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: Tensor, target_lengths: Tensor, blank: int = ...,
             reduction: str = ..., zero_infinity: bool = ...) -> Tensor: ...


def nll_loss(input: Tensor, target: Tensor, weight: Optional[Tensor] = ..., size_average: Optional[bool] = ...,
             ignore_index: int = ..., reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ...


def poisson_nll_loss(input: Tensor, target: Tensor, log_input: bool = ..., full: bool = ...,
                     size_average: Optional[bool] = ..., eps: float = ..., reduce: Optional[bool] = ...,
                     reduction: str = ...) -> Tensor: ...


def gaussian_nll_loss(input: Tensor, target: Tensor, var: Tensor, full: Optional[bool] = ...,
                      eps: Optional[float] = ..., reduction: Optional[str] = ...) -> Tensor: ...


def kl_div(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
           reduction: str = ..., log_target: bool = ...) -> Tensor: ...


def cross_entropy(input: Tensor, target: Tensor, weight: Optional[Tensor] = ..., size_average: Optional[bool] = ...,
                  ignore_index: int = ..., reduce: Optional[bool] = ..., reduction: str = ...,
                  label_smoothing: float = ...) -> Tensor: ...


def binary_cross_entropy(input: Tensor, target: Tensor, weight: Optional[Tensor] = ...,
                         size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
                         reduction: str = ...) -> Tensor: ...


def binary_cross_entropy_with_logits(input: Tensor, target: Tensor, weight: Optional[Tensor] = ...,
                                     size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
                                     reduction: str = ..., pos_weight: Optional[Tensor] = ...) -> Tensor: ...


def smooth_l1_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
                   reduction: str = ..., beta: float = ...) -> Tensor: ...


def huber_loss(input: Tensor, target: Tensor, reduction: str = ..., delta: float = ...) -> Tensor: ...


def l1_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
            reduction: str = ...) -> Tensor: ...


def mse_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
             reduction: str = ...) -> Tensor: ...


def margin_ranking_loss(input1: Tensor, input2: Tensor, target: Tensor, margin: float = ...,
                        size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
                        reduction: str = ...) -> Tensor: ...


def hinge_embedding_loss(input: Tensor, target: Tensor, margin: float = ..., size_average: Optional[bool] = ...,
                         reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ...


def multilabel_margin_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ...,
                           reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ...


def soft_margin_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
                     reduction: str = ...) -> Tensor: ...


def multilabel_soft_margin_loss(input: Tensor, target: Tensor, weight: Optional[Tensor] = ...,
                                size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
                                reduction: str = ...) -> Tensor: ...


def cosine_embedding_loss(input1: Tensor, input2: Tensor, target: Tensor, margin: float = ...,
                          size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
                          reduction: str = ...) -> Tensor: ...


def multi_margin_loss(input: Tensor, target: Tensor, p: int = ..., margin: float = ..., weight: Optional[Tensor] = ...,
                      size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
                      reduction: str = ...) -> Tensor: ...


def upsample(input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ..., mode: str = ...,
             align_corners: Optional[Any] = ...): ...


def interpolate(input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ..., mode: str = ...,
                align_corners: Optional[Any] = ..., recompute_scale_factor: Optional[Any] = ...,
                antialias: bool = ...): ...


def upsample_nearest(input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ...): ...


def upsample_bilinear(input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ...): ...


def grid_sample(input: Tensor, grid: Tensor, mode: str = ..., padding_mode: str = ...,
                align_corners: Optional[Any] = ...) -> Tensor: ...


def affine_grid(theta: Tensor, size: List[int], align_corners: Optional[Any] = ...) -> Tensor: ...


def pad(input: Tensor, pad: Sequence[int], mode: str = ..., value: float = ...) -> Tensor: ...


def pairwise_distance(x1: Tensor, x2: Tensor, p: float = ..., eps: float = ..., keepdim: bool = ...) -> Tensor: ...


def triplet_margin_loss(anchor: Tensor, positive: Tensor, negative: Tensor, margin: float = ..., p: float = ...,
                        eps: float = ..., swap: bool = ..., size_average: Optional[bool] = ...,
                        reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ...


def triplet_margin_with_distance_loss(anchor: Tensor, positive: Tensor, negative: Tensor, *,
                                      distance_function: Optional[Callable[[Tensor, Tensor], Tensor]]=...,
                                      margin: float=..., swap: bool=..., reduction: str=...) -> Tensor: ...


def normalize(input: Tensor, p: float = ..., dim: int = ..., eps: float = ...,
              out: Optional[Tensor] = ...) -> Tensor: ...


def assert_int_or_pair(arg: Any, arg_name: Any, message: Any) -> None: ...


def unfold(input: Tensor, kernel_size: _size_any_t, dilation: _size_any_t = ..., padding: _size_any_t = ...,
           stride: _size_any_t = ...) -> Tensor: ...


def fold(input: Tensor, output_size: _size_any_t, kernel_size: _size_any_t, dilation: _size_any_t = ..., padding: _size_any_t = ...,
         stride: _size_any_t = ...) -> Tensor: ...


def multi_head_attention_forward(query: Tensor,
                                 key: Tensor,
                                 value: Tensor,
                                 embed_dim_to_check: int,
                                 num_heads: int,
                                 in_proj_weight: Optional[Tensor],
                                 in_proj_bias: Optional[Tensor],
                                 bias_k: Optional[Tensor],
                                 bias_v: Optional[Tensor],
                                 add_zero_attn: bool,
                                 dropout_p: float,
                                 out_proj_weight: Tensor,
                                 out_proj_bias: Optional[Tensor],
                                 training: bool = True,
                                 key_padding_mask: Optional[Tensor] = None,
                                 need_weights: bool = True,
                                 attn_mask: Optional[Tensor] = None,
                                 use_separate_proj_weight: bool = False,
                                 q_proj_weight: Optional[Tensor] = None,
                                 k_proj_weight: Optional[Tensor] = None,
                                 v_proj_weight: Optional[Tensor] = None,
                                 static_k: Optional[Tensor] = None,
                                 static_v: Optional[Tensor] = None,
                                 average_attn_weights: bool = True
                                 ) -> Tuple[Tensor, Optional[Tensor]]: ...


from .. import conv1d as conv1d
from .. import conv2d as conv2d
from .. import conv3d as conv3d
from .. import conv_transpose1d as conv_transpose1d
from .. import conv_transpose2d as conv_transpose2d
from .. import conv_transpose3d as conv_transpose3d
from .. import conv_tbc as conv_tbc
from .. import avg_pool1d as avg_pool1d
from .. import relu_ as relu_
from .. import selu_ as selu_
from .. import celu_ as celu_
from .. import rrelu_ as rrelu_
from .. import pixel_shuffle as pixel_shuffle
from .. import pixel_unshuffle as pixel_unshuffle
from .. import channel_shuffle as channel_shuffle
from .. import native_channel_shuffle as native_channel_shuffle
from .. import pdist as pdist
from .. import cosine_similarity as cosine_similarity

fractional_max_pool2d: Callable
fractional_max_pool3d: Callable
max_pool1d: Callable
max_pool2d: Callable
max_pool3d: Callable
adaptive_max_pool1d: Callable
adaptive_max_pool2d: Callable
adaptive_max_pool3d: Callable
avg_pool2d: Callable
avg_pool3d: Callable
hardtanh_: Callable
elu_: Callable
leaky_relu_: Callable
logsigmoid: Callable
softplus: Callable
softshrink: Callable
one_hot: Callable