File size: 18,244 Bytes
9dd3461 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
from torch import Tensor
from torch.types import _size, _dtype
from typing import Any, Optional, Tuple, Dict, List, Callable, Sequence, Union
from .common_types import _ratio_any_t, _size_any_t, _size_1_t, _size_2_t, _size_3_t, _size_2_opt_t, _size_3_opt_t
# 'TypedDict' is a new accepted type that represents a dictionary with a fixed set of allowed keys.
# It is standards-track but not in `typing` yet. We leave this hear to be uncommented once the feature
# is wide-spread.
# from mypy_extensions import TypedDict
# GRID_SAMPLE_INTERPOLATION_MODES = TypedDict('GRID_SAMPLE_INTERPOLATION_MODES', {'bilinear': int, 'nearest': int})
# GRID_SAMPLE_PADDING_MODES = TypedDict('GRID_SAMPLE_PADDING_MODES', {'zeros': int, 'border': int, 'reflection': int})
GRID_SAMPLE_INTERPOLATION_MODES = Dict[str, int]
GRID_SAMPLE_PADDING_MODES = Dict[str, int]
# These stubs were generated by running stubgen (`stubgen --parse-only functional.py`), followed by manual cleaning.
#
# The 'BroadcastingList{1,2,3}' types were replaced by `_size` or _output_ratio, as appropriate.
# This was necessary since the JIT uses BroadcastingList* types but static checking with mypy etc requires a `Sequence`
# type. There is no way to express the expected lengths of these lists in the current Python typing system.
#
# Functions created via `_add_docstr` in `functional.py` where merely typed as `Any` by `stubgen`, so those were
# deleted from the stub and replaced by generated declarations. See `gen_pyi` for the implementation of the code
# generation logic for those functions. In the future, it might be worth looking into using the mypy plugin system
# to encode the type semantics of `_add_docstr`, should that system ever become widespread.
def fractional_max_pool2d_with_indices(input: Tensor, kernel_size: _size, output_size: Optional[_size] = ...,
output_ratio: Optional[_ratio_any_t] = ..., return_indices: bool = ...,
_random_samples: Optional[Tensor] = ...) -> Tuple[Tensor, Tensor]: ...
def fractional_max_pool3d_with_indices(input: Tensor, kernel_size: _size, output_size: Optional[_size] = ...,
output_ratio: Optional[_ratio_any_t] = ..., return_indices: bool = ...,
_random_samples: Optional[Tensor] = ...) -> Tuple[Tensor, Tensor]: ...
def max_pool1d_with_indices(input: Tensor, kernel_size: _size, stride: Optional[_size] = ..., padding: _size = ...,
dilation: _size = ..., ceil_mode: bool = ..., return_indices: bool = ...) -> Tuple[
Tensor, Tensor]: ...
def max_pool2d_with_indices(input: Tensor, kernel_size: _size, stride: Optional[_size] = ..., padding: _size = ...,
dilation: _size = ..., ceil_mode: bool = ..., return_indices: bool = ...) -> Tuple[
Tensor, Tensor]: ...
def max_pool3d_with_indices(input: Tensor, kernel_size: _size, stride: Optional[_size] = ..., padding: _size = ...,
dilation: _size = ..., ceil_mode: bool = ..., return_indices: bool = ...) -> Tuple[
Tensor, Tensor]: ...
def max_unpool1d(input: Tensor, indices: Tensor, kernel_size: _size, stride: Optional[_size] = ...,
padding: _size = ..., output_size: Optional[_size] = ...) -> Tensor: ...
def max_unpool2d(input: Tensor, indices: Tensor, kernel_size: _size, stride: Optional[_size] = ...,
padding: _size = ..., output_size: Optional[_size] = ...) -> Tensor: ...
def max_unpool3d(input: Tensor, indices: Tensor, kernel_size: _size, stride: Optional[_size] = ...,
padding: _size = ..., output_size: Optional[_size] = ...) -> Tensor: ...
def lp_pool1d(input: Tensor, norm_type: float, kernel_size: _size_1_t, stride: Union[Optional[_size], Optional[int]] = ...,
ceil_mode: bool = ...) -> Tensor: ...
def lp_pool2d(input: Tensor, norm_type: float, kernel_size: _size_2_t, stride: Union[Optional[_size], Optional[int]] = ...,
ceil_mode: bool = ...) -> Tensor: ...
def adaptive_max_pool1d_with_indices(input: Tensor, output_size: _size, return_indices: bool = ...) -> Tuple[
Tensor, Tensor]: ...
def adaptive_max_pool2d_with_indices(input: Tensor, output_size: _size_2_opt_t, return_indices: bool = ...) -> Tuple[
Tensor, Tensor]: ...
def adaptive_max_pool3d_with_indices(input: Tensor, output_size: _size_3_opt_t, return_indices: bool = ...) -> Tuple[
Tensor, Tensor]: ...
def adaptive_avg_pool1d(input: Tensor, output_size: _size_1_t) -> Tensor: ...
def adaptive_avg_pool2d(input: Tensor, output_size: _size_2_opt_t) -> Tensor: ...
def adaptive_avg_pool3d(input: Tensor, output_size: _size_3_opt_t) -> Tensor: ...
def dropout(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...
def alpha_dropout(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...
def dropout1d(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...
def dropout2d(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...
def dropout3d(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...
def feature_alpha_dropout(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...
def threshold(input: Tensor, threshold: float, value: float, inplace: bool = ...) -> Tensor: ...
def relu(input: Tensor, inplace: bool = ...) -> Tensor: ...
def glu(input: Tensor, dim: int = ...) -> Tensor: ...
def hardtanh(input: Tensor, min_val: float = ..., max_val: float = ..., inplace: bool = ...) -> Tensor: ...
def relu6(input: Tensor, inplace: bool = ...) -> Tensor: ...
def elu(input: Tensor, alpha: float = ..., inplace: bool = ...) -> Tensor: ...
def selu(input: Tensor, inplace: bool = ...) -> Tensor: ...
def celu(input: Tensor, alpha: float = ..., inplace: bool = ...) -> Tensor: ...
def leaky_relu(input: Tensor, negative_slope: float = ..., inplace: bool = ...) -> Tensor: ...
def prelu(input: Tensor, weight: Tensor) -> Tensor: ...
def rrelu(input: Tensor, lower: float = ..., upper: float = ..., training: bool = ...,
inplace: bool = ...) -> Tensor: ...
def gelu(input: Any, approximate: str = ...): ...
def hardshrink(input: Tensor, lambd: float = ...) -> Tensor: ...
def tanhshrink(input: Any): ...
def softsign(input: Any): ...
def softmin(input: Tensor, dim: Optional[int] = ..., _stacklevel: int = ..., dtype: Optional[_dtype] = ...) -> Tensor: ...
def softmax(input: Tensor, dim: Optional[int] = ..., _stacklevel: int = ..., dtype: Optional[_dtype] = ...) -> Tensor: ...
def gumbel_softmax(logits: Tensor, tau: float = ..., hard: bool = ..., eps: float = ..., dim: int = ...) -> Tensor: ...
def log_softmax(input: Tensor, dim: Optional[int] = ..., _stacklevel: int = ...,
dtype: Optional[_dtype] = ...) -> Tensor: ...
def tanh(input: Any): ...
def sigmoid(input: Any) -> Tensor: ...
def hardsigmoid(input: Tensor, inplace: bool = False) -> Tensor: ...
def linear(input: Tensor, weight: Tensor, bias: Optional[Tensor] = ...) -> Tensor: ...
def bilinear(input1: Tensor, input2: Tensor, weight: Tensor, bias: Optional[Tensor] = ...) -> Tensor: ...
def silu(input: Tensor, inplace: bool = False) -> Tensor: ...
def mish(input: Tensor, inplace: bool = False) -> Tensor: ...
def hardswish(input: Tensor, inplace: bool = False) -> Tensor: ...
def embedding(input: Tensor, weight: Tensor, padding_idx: Optional[int] = ..., max_norm: Optional[float] = ...,
norm_type: float = ..., scale_grad_by_freq: bool = ..., sparse: bool = ...) -> Tensor: ...
def embedding_bag(input: Tensor, weight: Tensor, offsets: Optional[Tensor] = ..., max_norm: Optional[float] = ...,
norm_type: float = ..., scale_grad_by_freq: bool = ..., mode: str = ...,
sparse: bool = ..., per_sample_weights: Optional[Tensor] = ...,
include_last_offset: bool = ..., padding_idx: Optional[int] = ...) -> Tensor: ...
def batch_norm(input: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor],
weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ..., training: bool = ...,
momentum: float = ..., eps: float = ...) -> Tensor: ...
def instance_norm(input: Tensor, running_mean: Optional[Tensor] = ..., running_var: Optional[Tensor] = ...,
weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ..., use_input_stats: bool = ...,
momentum: float = ..., eps: float = ...) -> Tensor: ...
def layer_norm(input: Tensor, normalized_shape: Sequence[int], weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ...,
eps: float = ...) -> Tensor: ...
def group_norm(input: Tensor, num_groups: int, weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ...,
eps: float = ...) -> Tensor: ...
def local_response_norm(input: Tensor, size: int, alpha: float = ..., beta: float = ..., k: float = ...) -> Tensor: ...
def ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: Tensor, target_lengths: Tensor, blank: int = ...,
reduction: str = ..., zero_infinity: bool = ...) -> Tensor: ...
def nll_loss(input: Tensor, target: Tensor, weight: Optional[Tensor] = ..., size_average: Optional[bool] = ...,
ignore_index: int = ..., reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ...
def poisson_nll_loss(input: Tensor, target: Tensor, log_input: bool = ..., full: bool = ...,
size_average: Optional[bool] = ..., eps: float = ..., reduce: Optional[bool] = ...,
reduction: str = ...) -> Tensor: ...
def gaussian_nll_loss(input: Tensor, target: Tensor, var: Tensor, full: Optional[bool] = ...,
eps: Optional[float] = ..., reduction: Optional[str] = ...) -> Tensor: ...
def kl_div(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
reduction: str = ..., log_target: bool = ...) -> Tensor: ...
def cross_entropy(input: Tensor, target: Tensor, weight: Optional[Tensor] = ..., size_average: Optional[bool] = ...,
ignore_index: int = ..., reduce: Optional[bool] = ..., reduction: str = ...,
label_smoothing: float = ...) -> Tensor: ...
def binary_cross_entropy(input: Tensor, target: Tensor, weight: Optional[Tensor] = ...,
size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
reduction: str = ...) -> Tensor: ...
def binary_cross_entropy_with_logits(input: Tensor, target: Tensor, weight: Optional[Tensor] = ...,
size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
reduction: str = ..., pos_weight: Optional[Tensor] = ...) -> Tensor: ...
def smooth_l1_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
reduction: str = ..., beta: float = ...) -> Tensor: ...
def huber_loss(input: Tensor, target: Tensor, reduction: str = ..., delta: float = ...) -> Tensor: ...
def l1_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
reduction: str = ...) -> Tensor: ...
def mse_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
reduction: str = ...) -> Tensor: ...
def margin_ranking_loss(input1: Tensor, input2: Tensor, target: Tensor, margin: float = ...,
size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
reduction: str = ...) -> Tensor: ...
def hinge_embedding_loss(input: Tensor, target: Tensor, margin: float = ..., size_average: Optional[bool] = ...,
reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ...
def multilabel_margin_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ...,
reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ...
def soft_margin_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
reduction: str = ...) -> Tensor: ...
def multilabel_soft_margin_loss(input: Tensor, target: Tensor, weight: Optional[Tensor] = ...,
size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
reduction: str = ...) -> Tensor: ...
def cosine_embedding_loss(input1: Tensor, input2: Tensor, target: Tensor, margin: float = ...,
size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
reduction: str = ...) -> Tensor: ...
def multi_margin_loss(input: Tensor, target: Tensor, p: int = ..., margin: float = ..., weight: Optional[Tensor] = ...,
size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
reduction: str = ...) -> Tensor: ...
def upsample(input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ..., mode: str = ...,
align_corners: Optional[Any] = ...): ...
def interpolate(input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ..., mode: str = ...,
align_corners: Optional[Any] = ..., recompute_scale_factor: Optional[Any] = ...,
antialias: bool = ...): ...
def upsample_nearest(input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ...): ...
def upsample_bilinear(input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ...): ...
def grid_sample(input: Tensor, grid: Tensor, mode: str = ..., padding_mode: str = ...,
align_corners: Optional[Any] = ...) -> Tensor: ...
def affine_grid(theta: Tensor, size: List[int], align_corners: Optional[Any] = ...) -> Tensor: ...
def pad(input: Tensor, pad: Sequence[int], mode: str = ..., value: float = ...) -> Tensor: ...
def pairwise_distance(x1: Tensor, x2: Tensor, p: float = ..., eps: float = ..., keepdim: bool = ...) -> Tensor: ...
def triplet_margin_loss(anchor: Tensor, positive: Tensor, negative: Tensor, margin: float = ..., p: float = ...,
eps: float = ..., swap: bool = ..., size_average: Optional[bool] = ...,
reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ...
def triplet_margin_with_distance_loss(anchor: Tensor, positive: Tensor, negative: Tensor, *,
distance_function: Optional[Callable[[Tensor, Tensor], Tensor]]=...,
margin: float=..., swap: bool=..., reduction: str=...) -> Tensor: ...
def normalize(input: Tensor, p: float = ..., dim: int = ..., eps: float = ...,
out: Optional[Tensor] = ...) -> Tensor: ...
def assert_int_or_pair(arg: Any, arg_name: Any, message: Any) -> None: ...
def unfold(input: Tensor, kernel_size: _size_any_t, dilation: _size_any_t = ..., padding: _size_any_t = ...,
stride: _size_any_t = ...) -> Tensor: ...
def fold(input: Tensor, output_size: _size_any_t, kernel_size: _size_any_t, dilation: _size_any_t = ..., padding: _size_any_t = ...,
stride: _size_any_t = ...) -> Tensor: ...
def multi_head_attention_forward(query: Tensor,
key: Tensor,
value: Tensor,
embed_dim_to_check: int,
num_heads: int,
in_proj_weight: Optional[Tensor],
in_proj_bias: Optional[Tensor],
bias_k: Optional[Tensor],
bias_v: Optional[Tensor],
add_zero_attn: bool,
dropout_p: float,
out_proj_weight: Tensor,
out_proj_bias: Optional[Tensor],
training: bool = True,
key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[Tensor] = None,
use_separate_proj_weight: bool = False,
q_proj_weight: Optional[Tensor] = None,
k_proj_weight: Optional[Tensor] = None,
v_proj_weight: Optional[Tensor] = None,
static_k: Optional[Tensor] = None,
static_v: Optional[Tensor] = None,
average_attn_weights: bool = True
) -> Tuple[Tensor, Optional[Tensor]]: ...
from .. import conv1d as conv1d
from .. import conv2d as conv2d
from .. import conv3d as conv3d
from .. import conv_transpose1d as conv_transpose1d
from .. import conv_transpose2d as conv_transpose2d
from .. import conv_transpose3d as conv_transpose3d
from .. import conv_tbc as conv_tbc
from .. import avg_pool1d as avg_pool1d
from .. import relu_ as relu_
from .. import selu_ as selu_
from .. import celu_ as celu_
from .. import rrelu_ as rrelu_
from .. import pixel_shuffle as pixel_shuffle
from .. import pixel_unshuffle as pixel_unshuffle
from .. import channel_shuffle as channel_shuffle
from .. import native_channel_shuffle as native_channel_shuffle
from .. import pdist as pdist
from .. import cosine_similarity as cosine_similarity
fractional_max_pool2d: Callable
fractional_max_pool3d: Callable
max_pool1d: Callable
max_pool2d: Callable
max_pool3d: Callable
adaptive_max_pool1d: Callable
adaptive_max_pool2d: Callable
adaptive_max_pool3d: Callable
avg_pool2d: Callable
avg_pool3d: Callable
hardtanh_: Callable
elu_: Callable
leaky_relu_: Callable
logsigmoid: Callable
softplus: Callable
softshrink: Callable
one_hot: Callable
|