File size: 49,496 Bytes
9dd3461 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 |
# -*- coding: utf-8 -*-
# This file is generated, do not modify it!
#
# To update this file, run the update masked docs script as follows:
#
# python tools/update_masked_docs.py
#
# The script must be called from an environment where the development
# version of torch package can be imported and is functional.
#
amax_docstring = """amax(input, dim, *, keepdim=False, dtype=None, mask=None) -> Tensor
Returns maximum of all the elements in the :attr:`input`
tensor along the given dimension(s) :attr:`dim` while the :attr:`input`
elements are masked out according to the boolean tensor
:attr:`mask`.
The identity value of maximum operation, which is used to start the
reduction, depends on input dtype. For instance, for float32, uint8,
and int32 dtypes, the identity values are ``-inf``, ``0``, and ``-2147483648``, respectively.
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension(s) :attr:`dim` where it is of
size 1. Otherwise, :attr:`dim` is squeezed (see
:func:`torch.squeeze`), resulting in the output tensor having 1 (or
``len(dim)``) fewer dimension(s).
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True
then the corresponding element in :attr:`input` tensor will be
included in maximum computation, otherwise the element is
ignored.
When all elements of :attr:`input` along the given dimension
:attr:`dim` are ignored (fully masked-out), the corresponding element
of the output tensor will have undefined value: it may or may not
correspond to the identity value of maximum operation; the
choice may correspond to the value that leads to the most efficient
storage of :attr:`output` tensor.
The mask of the output tensor can be computed as
``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim,
dtype=torch.bool)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int or tuple of ints, optional): the dimension or dimensions to reduce.
Default: None that is equivalent to ``tuple(range(input.ndim))``.
Keyword args:
keepdim (bool, optional): whether the output tensor has
:attr:`dim` retained or not. Default: False.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3, -2, -1], [ 0, 1, 2]])
>>> input
tensor([[-3, -2, -1],
[ 0, 1, 2]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch.masked._ops.amax(input, 1, mask=mask)
tensor([ -1, -9223372036854775808])
"""
amin_docstring = """amin(input, dim, *, keepdim=False, dtype=None, mask=None) -> Tensor
Returns minimum of all the elements in the :attr:`input`
tensor along the given dimension(s) :attr:`dim` while the :attr:`input`
elements are masked out according to the boolean tensor
:attr:`mask`.
The identity value of minimum operation, which is used to start the
reduction, depends on input dtype. For instance, for float32, uint8,
and int32 dtypes, the identity values are ``inf``, ``255``, and ``2147483647``, respectively.
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension(s) :attr:`dim` where it is of
size 1. Otherwise, :attr:`dim` is squeezed (see
:func:`torch.squeeze`), resulting in the output tensor having 1 (or
``len(dim)``) fewer dimension(s).
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True
then the corresponding element in :attr:`input` tensor will be
included in minimum computation, otherwise the element is
ignored.
When all elements of :attr:`input` along the given dimension
:attr:`dim` are ignored (fully masked-out), the corresponding element
of the output tensor will have undefined value: it may or may not
correspond to the identity value of minimum operation; the
choice may correspond to the value that leads to the most efficient
storage of :attr:`output` tensor.
The mask of the output tensor can be computed as
``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim,
dtype=torch.bool)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int or tuple of ints, optional): the dimension or dimensions to reduce.
Default: None that is equivalent to ``tuple(range(input.ndim))``.
Keyword args:
keepdim (bool, optional): whether the output tensor has
:attr:`dim` retained or not. Default: False.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3, -2, -1], [ 0, 1, 2]])
>>> input
tensor([[-3, -2, -1],
[ 0, 1, 2]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch.masked._ops.amin(input, 1, mask=mask)
tensor([ -3, 9223372036854775807])
"""
argmax_docstring = """argmax(input, dim, *, keepdim=False, dtype=None, mask=None) -> Tensor
Returns argmax of all the elements in the :attr:`input`
tensor along the given dimension(s) :attr:`dim` while the :attr:`input`
elements are masked out according to the boolean tensor
:attr:`mask`.
The identity value of argmax operation, which is used to start the
reduction, depends on input dtype. For instance, for float32, uint8,
and int32 dtypes, the identity values are ``-inf``, ``0``, and ``-2147483648``, respectively.
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension(s) :attr:`dim` where it is of
size 1. Otherwise, :attr:`dim` is squeezed (see
:func:`torch.squeeze`), resulting in the output tensor having 1 (or
``len(dim)``) fewer dimension(s).
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True
then the corresponding element in :attr:`input` tensor will be
included in argmax computation, otherwise the element is
ignored.
When all elements of :attr:`input` along the given dimension
:attr:`dim` are ignored (fully masked-out), the corresponding element
of the output tensor will have undefined value: it may or may not
correspond to the identity value of argmax operation; the
choice may correspond to the value that leads to the most efficient
storage of :attr:`output` tensor.
The mask of the output tensor can be computed as
``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim,
dtype=torch.bool)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int): the dimension along which argmax is computed.
Keyword args:
keepdim (bool, optional): whether the output tensor has
:attr:`dim` retained or not. Default: False.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3, -2, -1], [ 0, 1, 2]])
>>> input
tensor([[-3, -2, -1],
[ 0, 1, 2]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch.masked._ops.argmax(input, 1, mask=mask)
tensor([2, 0])
"""
argmin_docstring = """argmin(input, dim, *, keepdim=False, dtype=None, mask=None) -> Tensor
Returns argmin of all the elements in the :attr:`input`
tensor along the given dimension(s) :attr:`dim` while the :attr:`input`
elements are masked out according to the boolean tensor
:attr:`mask`.
The identity value of argmin operation, which is used to start the
reduction, depends on input dtype. For instance, for float32, uint8,
and int32 dtypes, the identity values are ``inf``, ``255``, and ``2147483647``, respectively.
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension(s) :attr:`dim` where it is of
size 1. Otherwise, :attr:`dim` is squeezed (see
:func:`torch.squeeze`), resulting in the output tensor having 1 (or
``len(dim)``) fewer dimension(s).
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True
then the corresponding element in :attr:`input` tensor will be
included in argmin computation, otherwise the element is
ignored.
When all elements of :attr:`input` along the given dimension
:attr:`dim` are ignored (fully masked-out), the corresponding element
of the output tensor will have undefined value: it may or may not
correspond to the identity value of argmin operation; the
choice may correspond to the value that leads to the most efficient
storage of :attr:`output` tensor.
The mask of the output tensor can be computed as
``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim,
dtype=torch.bool)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int): the dimension along which argmin is computed.
Keyword args:
keepdim (bool, optional): whether the output tensor has
:attr:`dim` retained or not. Default: False.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3, -2, -1], [ 0, 1, 2]])
>>> input
tensor([[-3, -2, -1],
[ 0, 1, 2]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch.masked._ops.argmin(input, 1, mask=mask)
tensor([0, 0])
"""
cumprod_docstring = """cumprod(input, dim, *, dtype=None, mask=None) -> Tensor
Returns cumulative_prod of all the slices in the :attr:`input` tensor
along :attr:`dim` while the :attr:`input` elements are masked out
according to the boolean tensor :attr:`mask`.
Let ``x`` be a sequence of unmasked elements of one-dimensional slice
of the :attr:`input` tensor. Cumsum of i-th element in ``x`` is
defined as ``prod(x[:i])``.
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True then
the corresponding element in :attr:`input` tensor will be included in
cumulative_prod computation, otherwise the element is ignored.
The values of masked-out elements of the output tensor have undefined
value: it may or may not be set to zero or nan; the choice may correspond to
the value that leads to the most efficient storage of :attr:`output`
tensor.
The mask of the cumulative_prod output tensor can be computed as
``torch.broadcast_to(mask, input.shape)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int): the dimension along which cumulative_prod is computed.
Keyword args:
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3., -2., -1.], [ 0., 1., 2.]])
>>> input
tensor([[-3., -2., -1.],
[ 0., 1., 2.]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch.masked._ops.cumprod(input, 1, mask=mask)
tensor([[-3., -3., 3.],
[ 1., 1., 1.]])
"""
cumsum_docstring = """cumsum(input, dim, *, dtype=None, mask=None) -> Tensor
Returns cumulative_sum of all the slices in the :attr:`input` tensor
along :attr:`dim` while the :attr:`input` elements are masked out
according to the boolean tensor :attr:`mask`.
Let ``x`` be a sequence of unmasked elements of one-dimensional slice
of the :attr:`input` tensor. Cumsum of i-th element in ``x`` is
defined as ``sum(x[:i])``.
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True then
the corresponding element in :attr:`input` tensor will be included in
cumulative_sum computation, otherwise the element is ignored.
The values of masked-out elements of the output tensor have undefined
value: it may or may not be set to zero or nan; the choice may correspond to
the value that leads to the most efficient storage of :attr:`output`
tensor.
The mask of the cumulative_sum output tensor can be computed as
``torch.broadcast_to(mask, input.shape)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int): the dimension along which cumulative_sum is computed.
Keyword args:
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3., -2., -1.], [ 0., 1., 2.]])
>>> input
tensor([[-3., -2., -1.],
[ 0., 1., 2.]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch.masked._ops.cumsum(input, 1, mask=mask)
tensor([[-3., -3., -4.],
[ 0., 0., 0.]])
"""
log_softmax_docstring = """log_softmax(input, dim, *, dtype=None, mask=None) -> Tensor
Returns log_softmax of all the slices in the :attr:`input` tensor
along :attr:`dim` while the :attr:`input` elements are masked out
according to the boolean tensor :attr:`mask`.
Let ``x`` be a sequence of unmasked elements of one-dimensional slice
of the :attr:`input` tensor. LogSoftmax of i-th element in ``x`` is
defined as ``log(exp(x[i])/sum(exp(x)))``.
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True then
the corresponding element in :attr:`input` tensor will be included in
log_softmax computation, otherwise the element is ignored.
The values of masked-out elements of the output tensor have undefined
value: it may or may not be set to zero or nan; the choice may correspond to
the value that leads to the most efficient storage of :attr:`output`
tensor.
The mask of the log_softmax output tensor can be computed as
``torch.broadcast_to(mask, input.shape)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int): the dimension along which log_softmax is computed.
Keyword args:
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3., -2., -1.], [ 0., 1., 2.]])
>>> input
tensor([[-3., -2., -1.],
[ 0., 1., 2.]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch.masked._ops.log_softmax(input, 1, mask=mask)
tensor([[-2.1269, -inf, -0.1269],
[ nan, nan, nan]])
"""
logsumexp_docstring = """logsumexp(input, dim, *, keepdim=False, dtype=None, mask=None) -> Tensor
Returns logsumexp of all the elements in the :attr:`input`
tensor along the given dimension(s) :attr:`dim` while the :attr:`input`
elements are masked out according to the boolean tensor
:attr:`mask`.
The identity value of logsumexp operation, which is used to start the reduction, is ``-2147483648``.
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension(s) :attr:`dim` where it is of
size 1. Otherwise, :attr:`dim` is squeezed (see
:func:`torch.squeeze`), resulting in the output tensor having 1 (or
``len(dim)``) fewer dimension(s).
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True
then the corresponding element in :attr:`input` tensor will be
included in logsumexp computation, otherwise the element is
ignored.
When all elements of :attr:`input` along the given dimension
:attr:`dim` are ignored (fully masked-out), the corresponding element
of the output tensor will have undefined value: it may or may not
correspond to the identity value of logsumexp operation; the
choice may correspond to the value that leads to the most efficient
storage of :attr:`output` tensor.
The mask of the output tensor can be computed as
``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim,
dtype=torch.bool)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int or tuple of ints, optional): the dimension or dimensions to reduce.
Default: None that is equivalent to ``tuple(range(input.ndim))``.
Keyword args:
keepdim (bool, optional): whether the output tensor has
:attr:`dim` retained or not. Default: False.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3, -2, -1], [ 0, 1, 2]])
>>> input
tensor([[-3, -2, -1],
[ 0, 1, 2]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch.masked._ops.logsumexp(input, 1, mask=mask)
tensor([ 0, -9223372036854775808])
"""
mean_docstring = """mean(input, dim, *, keepdim=False, dtype=None, mask=None) -> Tensor
Returns mean of all the elements in the :attr:`input`
tensor along the given dimension(s) :attr:`dim` while the :attr:`input`
elements are masked out according to the boolean tensor
:attr:`mask`.
By definition, the identity value of a mean operation is the mean
value of the tensor. If all elements of the input tensor along given
dimension(s) :attr:`dim` are masked-out, the identity value of the
mean is undefined. Due to this ambiguity, the elements of output
tensor with strided layout, that correspond to fully masked-out
elements, have ``nan`` values.
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension(s) :attr:`dim` where it is of
size 1. Otherwise, :attr:`dim` is squeezed (see
:func:`torch.squeeze`), resulting in the output tensor having 1 (or
``len(dim)``) fewer dimension(s).
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True
then the corresponding element in :attr:`input` tensor will be
included in mean computation, otherwise the element is
ignored.
When all elements of :attr:`input` along the given dimension
:attr:`dim` are ignored (fully masked-out), the corresponding element
of the output tensor will have undefined value: it may or may not
correspond to the identity value of mean operation; the
choice may correspond to the value that leads to the most efficient
storage of :attr:`output` tensor.
The mask of the output tensor can be computed as
``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim,
dtype=torch.bool)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int or tuple of ints, optional): the dimension or dimensions to reduce.
Default: None that is equivalent to ``tuple(range(input.ndim))``.
Keyword args:
keepdim (bool, optional): whether the output tensor has
:attr:`dim` retained or not. Default: False.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3, -2, -1], [ 0, 1, 2]])
>>> input
tensor([[-3, -2, -1],
[ 0, 1, 2]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch.masked._ops.mean(input, 1, mask=mask)
tensor([-2., nan])
"""
median_docstring = """median(input, dim, *, keepdim=False, dtype=None, mask=None) -> Tensor
Returns median of all the elements in the :attr:`input`
tensor along the given dimension(s) :attr:`dim` while the :attr:`input`
elements are masked out according to the boolean tensor
:attr:`mask`.
By definition, the identity value of a median operation is the median
value of the tensor. If all elements of the input tensor along given
dimension(s) :attr:`dim` are masked-out, the identity value of the
median is undefined. Due to this ambiguity, the elements of output
tensor with strided layout, that correspond to fully masked-out
elements, have ``nan`` values.
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension(s) :attr:`dim` where it is of
size 1. Otherwise, :attr:`dim` is squeezed (see
:func:`torch.squeeze`), resulting in the output tensor having 1 (or
``len(dim)``) fewer dimension(s).
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True
then the corresponding element in :attr:`input` tensor will be
included in median computation, otherwise the element is
ignored.
When all elements of :attr:`input` along the given dimension
:attr:`dim` are ignored (fully masked-out), the corresponding element
of the output tensor will have undefined value: it may or may not
correspond to the identity value of median operation; the
choice may correspond to the value that leads to the most efficient
storage of :attr:`output` tensor.
The mask of the output tensor can be computed as
``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim,
dtype=torch.bool)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int): the dimension along which median is computed.
Keyword args:
keepdim (bool, optional): whether the output tensor has
:attr:`dim` retained or not. Default: False.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3., -2., -1.], [ 0., 1., 2.]])
>>> input
tensor([[-3., -2., -1.],
[ 0., 1., 2.]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch.masked._ops.median(input, 1, mask=mask)
tensor([-3., nan])
"""
norm_docstring = """norm(input, ord, dim, *, keepdim=False, dtype=None, mask=None) -> Tensor
Returns norm of all the elements in the :attr:`input`
tensor along the given dimension(s) :attr:`dim` while the :attr:`input`
elements are masked out according to the boolean tensor
:attr:`mask`.
The identity value of norm operation, which is used to start the
reduction, is ``0.0``, except for ``ord=-inf`` it is
``inf``.
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension(s) :attr:`dim` where it is of
size 1. Otherwise, :attr:`dim` is squeezed (see
:func:`torch.squeeze`), resulting in the output tensor having 1 (or
``len(dim)``) fewer dimension(s).
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True
then the corresponding element in :attr:`input` tensor will be
included in norm computation, otherwise the element is
ignored.
When all elements of :attr:`input` along the given dimension
:attr:`dim` are ignored (fully masked-out), the corresponding element
of the output tensor will have undefined value: it may or may not
correspond to the identity value of norm operation; the
choice may correspond to the value that leads to the most efficient
storage of :attr:`output` tensor.
The mask of the output tensor can be computed as
``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim,
dtype=torch.bool)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
ord (int, float, optional): the order of vector norm. Default: 2.
See :func:`torch.linalg.vector_norm` for a list of supported norms.
dim (int or tuple of ints, optional): the dimension or dimensions to reduce.
Default: None that is equivalent to ``tuple(range(input.ndim))``.
Keyword args:
keepdim (bool, optional): whether the output tensor has
:attr:`dim` retained or not. Default: False.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3., -2., -1.], [ 0., 1., 2.]])
>>> input
tensor([[-3., -2., -1.],
[ 0., 1., 2.]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch.masked._ops.norm(input, 2.0, 1, mask=mask)
tensor([3.1623, 0.0000])
"""
normalize_docstring = """normalize(input, ord, dim, *, eps=1e-12, dtype=None, mask=None) -> Tensor
Returns normalize of all the slices in the :attr:`input` tensor
along :attr:`dim` while the :attr:`input` elements are masked out
according to the boolean tensor :attr:`mask`.
Let ``x`` be a sequence of unmasked elements of one-dimensional slice
of the :attr:`input` tensor. Normalize of i-th element in ``x`` is
defined as ``x[i]/max(norm(x, p), eps)``.
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True then
the corresponding element in :attr:`input` tensor will be included in
normalize computation, otherwise the element is ignored.
The values of masked-out elements of the output tensor have undefined
value: it may or may not be set to zero or nan; the choice may correspond to
the value that leads to the most efficient storage of :attr:`output`
tensor.
The mask of the normalize output tensor can be computed as
``torch.broadcast_to(mask, input.shape)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
ord (int, float): the order of vector norm. Default: 2.
See :func:`torch.linalg.vector_norm` for a list of supported norms.
dim (int): the dimension along which normalize is computed.
Keyword args:
eps (float, optional): small value to avoid division by zero. Default: 1e-12.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3., -2., -1.], [ 0., 1., 2.]])
>>> input
tensor([[-3., -2., -1.],
[ 0., 1., 2.]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch.masked._ops.normalize(input, 2.0, 1, mask=mask)
tensor([[-0.9487, 0.0000, -0.3162],
[ 0.0000, 0.0000, 0.0000]])
"""
prod_docstring = """prod(input, dim, *, keepdim=False, dtype=None, mask=None) -> Tensor
Returns product of all the elements in the :attr:`input`
tensor along the given dimension(s) :attr:`dim` while the :attr:`input`
elements are masked out according to the boolean tensor
:attr:`mask`.
The identity value of product operation, which is used to start the reduction, is ``1``.
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension(s) :attr:`dim` where it is of
size 1. Otherwise, :attr:`dim` is squeezed (see
:func:`torch.squeeze`), resulting in the output tensor having 1 (or
``len(dim)``) fewer dimension(s).
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True
then the corresponding element in :attr:`input` tensor will be
included in product computation, otherwise the element is
ignored.
When all elements of :attr:`input` along the given dimension
:attr:`dim` are ignored (fully masked-out), the corresponding element
of the output tensor will have undefined value: it may or may not
correspond to the identity value of product operation; the
choice may correspond to the value that leads to the most efficient
storage of :attr:`output` tensor.
The mask of the output tensor can be computed as
``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim,
dtype=torch.bool)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int or tuple of ints, optional): the dimension or dimensions to reduce.
Default: None that is equivalent to ``tuple(range(input.ndim))``.
Keyword args:
keepdim (bool, optional): whether the output tensor has
:attr:`dim` retained or not. Default: False.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3, -2, -1], [ 0, 1, 2]])
>>> input
tensor([[-3, -2, -1],
[ 0, 1, 2]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch.masked._ops.prod(input, 1, mask=mask)
tensor([3, 1])
"""
softmax_docstring = """softmax(input, dim, *, dtype=None, mask=None) -> Tensor
Returns softmax of all the slices in the :attr:`input` tensor
along :attr:`dim` while the :attr:`input` elements are masked out
according to the boolean tensor :attr:`mask`.
Let ``x`` be a sequence of unmasked elements of one-dimensional slice
of the :attr:`input` tensor. Softmax of i-th element in ``x`` is
defined as ``exp(x[i])/sum(exp(x))``.
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True then
the corresponding element in :attr:`input` tensor will be included in
softmax computation, otherwise the element is ignored.
The values of masked-out elements of the output tensor have undefined
value: it may or may not be set to zero or nan; the choice may correspond to
the value that leads to the most efficient storage of :attr:`output`
tensor.
The mask of the softmax output tensor can be computed as
``torch.broadcast_to(mask, input.shape)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int): the dimension along which softmax is computed.
Keyword args:
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3., -2., -1.], [ 0., 1., 2.]])
>>> input
tensor([[-3., -2., -1.],
[ 0., 1., 2.]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch.masked._ops.softmax(input, 1, mask=mask)
tensor([[0.1192, 0.0000, 0.8808],
[ nan, nan, nan]])
"""
softmin_docstring = """softmin(input, dim, *, dtype=None, mask=None) -> Tensor
Returns softmin of all the slices in the :attr:`input` tensor
along :attr:`dim` while the :attr:`input` elements are masked out
according to the boolean tensor :attr:`mask`.
Let ``x`` be a sequence of unmasked elements of one-dimensional slice
of the :attr:`input` tensor. Softmin of i-th element in ``x`` is
defined as ``exp(-x[i])/sum(exp(-x))``.
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True then
the corresponding element in :attr:`input` tensor will be included in
softmin computation, otherwise the element is ignored.
The values of masked-out elements of the output tensor have undefined
value: it may or may not be set to zero or nan; the choice may correspond to
the value that leads to the most efficient storage of :attr:`output`
tensor.
The mask of the softmin output tensor can be computed as
``torch.broadcast_to(mask, input.shape)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int): the dimension along which softmin is computed.
Keyword args:
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3., -2., -1.], [ 0., 1., 2.]])
>>> input
tensor([[-3., -2., -1.],
[ 0., 1., 2.]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch.masked._ops.softmin(input, 1, mask=mask)
tensor([[0.8808, 0.0000, 0.1192],
[ nan, nan, nan]])
"""
std_docstring = """std(input, dim, unbiased, *, keepdim=False, dtype=None, mask=None) -> Tensor
Returns standard_deviation of all the elements in the :attr:`input`
tensor along the given dimension(s) :attr:`dim` while the :attr:`input`
elements are masked out according to the boolean tensor
:attr:`mask`.
The identity value of sample standard deviation operation is undefined. The
elements of output tensor with strided layout, that correspond to
fully masked-out elements, have ``nan`` values.
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension(s) :attr:`dim` where it is of
size 1. Otherwise, :attr:`dim` is squeezed (see
:func:`torch.squeeze`), resulting in the output tensor having 1 (or
``len(dim)``) fewer dimension(s).
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True
then the corresponding element in :attr:`input` tensor will be
included in standard_deviation computation, otherwise the element is
ignored.
When all elements of :attr:`input` along the given dimension
:attr:`dim` are ignored (fully masked-out), the corresponding element
of the output tensor will have undefined value: it may or may not
correspond to the identity value of standard_deviation operation; the
choice may correspond to the value that leads to the most efficient
storage of :attr:`output` tensor.
The mask of the output tensor can be computed as
``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim,
dtype=torch.bool)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int or tuple of ints, optional): the dimension or dimensions to reduce.
Default: None that is equivalent to ``tuple(range(input.ndim))``.
unbiased (bool): when True, use Bessel’s correction, otherwise, compute
the uncorrected sample variance.
Keyword args:
keepdim (bool, optional): whether the output tensor has
:attr:`dim` retained or not. Default: False.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3, -2, -1], [ 0, 1, 2]])
>>> input
tensor([[-3, -2, -1],
[ 0, 1, 2]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch.masked._ops.std(input, 1, False, mask=mask)
tensor([1., nan])
"""
sum_docstring = """sum(input, dim, *, keepdim=False, dtype=None, mask=None) -> Tensor
Returns sum of all the elements in the :attr:`input`
tensor along the given dimension(s) :attr:`dim` while the :attr:`input`
elements are masked out according to the boolean tensor
:attr:`mask`.
The identity value of sum operation, which is used to start the reduction, is ``0``.
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension(s) :attr:`dim` where it is of
size 1. Otherwise, :attr:`dim` is squeezed (see
:func:`torch.squeeze`), resulting in the output tensor having 1 (or
``len(dim)``) fewer dimension(s).
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True
then the corresponding element in :attr:`input` tensor will be
included in sum computation, otherwise the element is
ignored.
When all elements of :attr:`input` along the given dimension
:attr:`dim` are ignored (fully masked-out), the corresponding element
of the output tensor will have undefined value: it may or may not
correspond to the identity value of sum operation; the
choice may correspond to the value that leads to the most efficient
storage of :attr:`output` tensor.
The mask of the output tensor can be computed as
``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim,
dtype=torch.bool)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int or tuple of ints, optional): the dimension or dimensions to reduce.
Default: None that is equivalent to ``tuple(range(input.ndim))``.
Keyword args:
keepdim (bool, optional): whether the output tensor has
:attr:`dim` retained or not. Default: False.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3, -2, -1], [ 0, 1, 2]])
>>> input
tensor([[-3, -2, -1],
[ 0, 1, 2]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch.masked._ops.sum(input, 1, mask=mask)
tensor([-4, 0])
"""
var_docstring = """var(input, dim, unbiased, *, keepdim=False, dtype=None, mask=None) -> Tensor
Returns variance of all the elements in the :attr:`input`
tensor along the given dimension(s) :attr:`dim` while the :attr:`input`
elements are masked out according to the boolean tensor
:attr:`mask`.
The identity value of sample variance operation is undefined. The
elements of output tensor with strided layout, that correspond to
fully masked-out elements, have ``nan`` values.
If :attr:`keepdim` is ``True``, the output tensor is of the same size
as :attr:`input` except in the dimension(s) :attr:`dim` where it is of
size 1. Otherwise, :attr:`dim` is squeezed (see
:func:`torch.squeeze`), resulting in the output tensor having 1 (or
``len(dim)``) fewer dimension(s).
The boolean tensor :attr:`mask` defines the "validity" of
:attr:`input` tensor elements: if :attr:`mask` element is True
then the corresponding element in :attr:`input` tensor will be
included in variance computation, otherwise the element is
ignored.
When all elements of :attr:`input` along the given dimension
:attr:`dim` are ignored (fully masked-out), the corresponding element
of the output tensor will have undefined value: it may or may not
correspond to the identity value of variance operation; the
choice may correspond to the value that leads to the most efficient
storage of :attr:`output` tensor.
The mask of the output tensor can be computed as
``torch.any(torch.broadcast_to(mask, input.shape), dim, keepdim=keepdim,
dtype=torch.bool)``.
The shapes of the :attr:`mask` tensor and the :attr:`input` tensor
don't need to match, but they must be :ref:`broadcastable
<broadcasting-semantics>` and the dimensionality of the :attr:`mask`
tensor must not be greater than of the :attr:`input` tensor.
Args:
input (Tensor): the input tensor
dim (int or tuple of ints, optional): the dimension or dimensions to reduce.
Default: None that is equivalent to ``tuple(range(input.ndim))``.
unbiased (bool): when True, use Bessel’s correction, otherwise, compute
the uncorrected sample variance.
Keyword args:
keepdim (bool, optional): whether the output tensor has
:attr:`dim` retained or not. Default: False.
dtype (:class:`torch.dtype`, optional): the desired data type
of returned tensor. If specified, the input tensor is
casted to :attr:`dtype` before the operation is
performed. Default: None.
mask (:class:`torch.Tensor`, optional): the boolean tensor
containing the binary mask of validity of input tensor
elements.
Default: None that is equivalent to ``torch.ones(input.shape, dtype=torch.bool)``.
Example::
>>> input = tensor([[-3, -2, -1], [ 0, 1, 2]])
>>> input
tensor([[-3, -2, -1],
[ 0, 1, 2]])
>>> mask = tensor([[ True, False, True], [False, False, False]])
>>> mask
tensor([[ True, False, True],
[False, False, False]])
>>> torch.masked._ops.var(input, 1, False, mask=mask)
tensor([1., nan])
"""
|