File size: 46,780 Bytes
9dd3461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
"""Tracing

This module contains functionality to support the JIT's tracing frontend, notably:
    * torch.jit.trace
    * torch.jit.trace_module

This is not intended to be imported directly; please use the exposed
functionalities in `torch.jit`.
"""
import torch

import copy
import os
import contextlib
import functools
import warnings
import inspect
import re
from typing import Any, Dict, List, Optional, Set

from torch.jit._state import _python_cu, _enabled
from torch.jit._script import ScriptModule, _CachedForward, script
from torch._jit_internal import _qualified_name, is_scripting, get_callable_argument_names
from torch.autograd import function
from torch.nn import Module

from torch.testing._comparison import default_tolerances

_flatten = torch._C._jit_flatten
_unflatten = torch._C._jit_unflatten


def _create_interpreter_name_lookup_fn(frames_up=1):
    def _get_interpreter_name_for_var(var):
        frame = inspect.currentframe()
        if not frame:
            raise RuntimeError("failed to inspect frame")

        i = 0
        while i < frames_up + 1:
            frame = frame.f_back
            if not frame:
                raise RuntimeError("failed to get frame")
            i += 1

        f_locals = frame.f_locals
        f_globals = frame.f_globals

        for k, v in f_locals.items():
            if isinstance(v, torch.Tensor) and var is v:
                return k if k != "self" else ""
        return ""

    return _get_interpreter_name_for_var


def _unique_state_dict(module, keep_vars=False):
    # since Parameter.detach() always creates a new torch.Tensor instance,
    # id(v) doesn't work with it. So we always get the Parameter or Buffer
    # as values, and deduplicate the params using Parameters and Buffers
    state_dict = module.state_dict(keep_vars=True)
    filtered_dict = type(state_dict)()
    seen_ids: Set[int] = set()
    for k, v in state_dict.items():
        if id(v) in seen_ids:
            continue
        seen_ids.add(id(v))
        if keep_vars:
            filtered_dict[k] = v
        else:
            filtered_dict[k] = v.detach()
    return filtered_dict


class ONNXTracedModule(torch.nn.Module):
    def __init__(
        self,
        inner,
        strict=True,
        force_outplace=False,
        return_inputs=False,
        return_inputs_states=False,
    ):
        super(ONNXTracedModule, self).__init__()
        # inner may be a Module, or it may be an arbitrary callable
        # If it's a Module, we get its parameters automatically, which lets
        # us avoid a special casing functions versus modules.
        self.inner = inner
        self.strict = strict
        self._force_outplace = force_outplace
        self._return_inputs = return_inputs
        self._return_inputs_states = return_inputs_states

    def forward(self, *args: torch.Tensor):
        in_vars, in_desc = _flatten(args)
        # NOTE: use full state, because we need it for BatchNorm export
        # This differs from the compiler path, which doesn't support it at the moment.
        module_state = list(_unique_state_dict(self, keep_vars=True).values())

        ret_inputs = []
        inputs_states = []
        outs = []

        def wrapper(*args):
            in_args: List[torch.Tensor] = []
            for i in range(len(in_vars)):
                if not isinstance(args[i], torch.Tensor):
                    raise RuntimeError('Expected Tensor argument')
                in_args.append(args[i])

            trace_inputs = _unflatten(in_args, in_desc)

            ret_inputs.append(
                tuple(x.clone(memory_format=torch.preserve_format) for x in args)
            )
            if self._return_inputs_states:
                inputs_states.append(_unflatten(in_args, in_desc))
            outs.append(self.inner(*trace_inputs))
            if self._return_inputs_states:
                inputs_states[0] = (inputs_states[0], trace_inputs)
            out_vars, _ = _flatten(outs)
            if len(out_vars) == 1:
                return out_vars[0]
            else:
                return tuple(out_vars)

        graph, out = torch._C._create_graph_by_tracing(
            wrapper,
            in_vars + module_state,
            _create_interpreter_name_lookup_fn(),
            self.strict,
            self._force_outplace,
        )

        if self._return_inputs:
            return graph, outs[0], ret_inputs[0]
        if self._return_inputs_states:
            return graph, outs[0], inputs_states[0]
        else:
            return graph, outs[0]


def _clone_inputs(args):
    def clone_input(a):
        if a is None:
            return None
        elif isinstance(a, torch.Tensor):
            # TODO: figure out one liner to .clone() and set requires_grad
            v = (
                a.detach()
                .clone(memory_format=None if a.is_mkldnn else torch.preserve_format)
                .requires_grad_(a.requires_grad)
            )
            if a.grad is not None:
                v.grad = clone_input(v.grad)
            return v
        else:
            return a.clone(memory_format=torch.preserve_format)

    return function._nested_map(
        lambda x: isinstance(x, torch.Tensor), clone_input, condition_msg="tensors"
    )(args)


# This is purely for developer debugging.  We are not going to advertise it.
_JIT_TIME = os.environ.get("PYTORCH_JIT_TIME", False)  # CUDA-only timing
_JIT_DISABLE = os.environ.get("PYTORCH_JIT_DISABLE", False)
_JIT_STATS = os.environ.get("PYTORCH_JIT_STATS", False)


@contextlib.contextmanager
def _time(trace_name, name, time=True):
    if (not _JIT_TIME and not time) or not torch.cuda.is_available():
        yield
        return
    stream = torch.cuda.current_stream()
    start = torch.cuda.Event(enable_timing=True)
    end = torch.cuda.Event(enable_timing=True)
    stream.record_event(start)
    try:
        yield
    finally:
        stream.record_event(end)
        end.synchronize()
        print("{} {} time: {} ms".format(trace_name, name, start.elapsed_time(end)))


def verify(model, args, loss_fn=torch.sum, devices=None):
    """
    Verify that a JIT compiled model has the same behavior as its uncompiled
    version along with its backwards pass.  If your model returns multiple
    outputs, you must also specify a `loss_fn` to produce a loss for which
    the backwards will be computed.

    This function has side-effects (e.g., it executes your model / saves and loads
    parameters), so don't expect the model to come out exactly the same as what
    you passed in.

    Args:
        model (compiled torch.nn.Module or function): the module/function to be
            verified.  The module/function definition MUST have been decorated with
            `@torch.jit.compile`.
        args (tuple or Tensor): the positional arguments to pass to the
            compiled function/module to be verified.  A non-tuple is assumed to
            be a single positional argument to be passed to the model.
        loss_fn (function, optional): the loss function to be applied to
            the output of the model, before backwards is invoked.  By default,
            we assume that a model returns a single result, and we :func:`torch.sum`
            before calling backwards; if this is inappropriate, you can pass your
            own loss function.  Note that if a model returns a tuple of results,
            these are passed as separate positional arguments to `loss_fn`.
        devices (iterable of device IDs, optional): the GPU devices which the
            compiled module will be run on.  This determines the RNG state we
            must save when running both compiled and uncompiled versions of the model.
    """
    # TODO: In principle, we track device information in our trace, so it
    # should be possible to check if our execution actually obeyed the 'devices'
    # the user provided.

    # TODO: Consider adding a utility function to torch.jit to test
    # for this case
    if not isinstance(model, torch._C.CompiledFunction):  # type: ignore[attr-defined]
        raise TypeError(
            "Cannot verify an uncompiled module.  Add @torch.jit.compile to compile it"
        )
    is_module = isinstance(model, Module)

    if not isinstance(args, tuple):
        args = (args,)

    saved_args = _clone_inputs(args)
    if is_module:
        saved_state = copy.deepcopy(model.state_dict())

    def run_fwd_bwd(args, force_trace=False, assert_compiled=False):
        params = list(model.parameters()) if is_module else []
        in_vars, _ = _flatten((args, params))
        # We use a special API to reset the trace and compile it from scratch.
        compiled_fn = model
        if force_trace:
            compiled_fn.clear_cache()
        if assert_compiled:
            hits = compiled_fn.hits
        out = model(*args)
        if assert_compiled and compiled_fn.hits == hits:
            raise RuntimeError("failed to use the compiled function")
        if not isinstance(out, tuple):
            out = (out,)
        if loss_fn == torch.sum and len(out) != 1:
            raise ValueError(
                (
                    "Model returns {} outputs, but default loss function "
                    "(torch.sum) can only handle a single output"
                ).format(len(out))
            )
        out_vars, _ = _flatten(out)
        saved_outs = [
            v.detach().clone(memory_format=torch.preserve_format) for v in out_vars
        ]
        loss = loss_fn(*out)
        grads = torch.autograd.grad([loss], in_vars)
        # TODO: I'm not sure if the clone here is necessary but it is safer
        saved_grads = [
            v.detach().clone(memory_format=torch.preserve_format) for v in grads
        ]
        return (saved_outs, saved_grads)

    with torch.random.fork_rng(devices, _caller="torch.jit.verify"):
        uncompiled_outs, uncompiled_grads = run_fwd_bwd(args, force_trace=True)
        assert model.has_trace_for(*args)

    if is_module:
        model.load_state_dict(saved_state)
    compiled_outs, compiled_grads = run_fwd_bwd(args, assert_compiled=True)

    _verify_equal(uncompiled_outs, compiled_outs)
    _verify_equal(uncompiled_grads, compiled_grads)


def _verify_equal(xs, ys):
    for x, y in zip(xs, ys):
        if x.sub(y).abs().max() > 1e-6:
            raise RuntimeError("JIT and real computation mismatch")


def indent(s):
    return "\n".join(["\t" + line for line in s.splitlines()])


class TracingCheckError(Exception):
    def __init__(self, graph_diff_error, tensor_compare_error, extra_msg=None):
        self.message = "Tracing failed sanity checks!\n"
        if extra_msg is not None:
            self.message += extra_msg + "\n"
        if graph_diff_error is not None:
            self.message += "ERROR: Graphs differed across invocations!\n"
            self.message += indent(graph_diff_error) + "\n"
        if tensor_compare_error is not None:
            self.message += (
                "ERROR: Tensor-valued Constant nodes differed in value "
                "across invocations. This often indicates that the tracer has"
                " encountered untraceable code.\n"
            )
            self.message += indent(tensor_compare_error) + "\n"
        super(TracingCheckError, self).__init__(self.message)


# Check the traced module against a set of user-provided validation inputs
@torch.no_grad()
def _check_trace(
    check_inputs,
    func,
    traced_func,
    check_tolerance,
    strict,
    force_outplace,
    is_trace_module,
    _module_class,
):
    # Note: tracing is independent of optimizations, which consume the trace
    for inputs in check_inputs:

        if isinstance(inputs, torch.Tensor):
            inputs = (inputs,)

        if is_trace_module:
            copied_dict = {}
            for name, data in inputs.items():
                copied_dict[name] = _clone_inputs(data)
            check_mod = torch.jit.trace_module(
                func.__self__ if hasattr(func, "__self__") else func,
                copied_dict,
                check_trace=False,
                strict=strict,
                _force_outplace=force_outplace,
                _module_class=_module_class,
                _compilation_unit=torch._C.CompilationUnit(),
            )
            check_mod_func = check_mod._c._get_method(traced_func.name)
            inputs = inputs[traced_func.name]
            if isinstance(inputs, (torch.Tensor, dict)):
                inputs = (inputs,)
        else:
            check_mod = torch.jit.trace(
                func,
                _clone_inputs(inputs),
                check_trace=False,
                strict=strict,
                _force_outplace=force_outplace,
                _module_class=_module_class,
            )
            check_mod_func = check_mod

        def graph_diagnostic_info():
            mod_canonicalized = torch._C._jit_pass_canonicalize(traced_func.graph)
            torch._C._jit_pass_inline(mod_canonicalized)
            torch._C._jit_pass_erase_shape_information(mod_canonicalized)
            mod_str = str(mod_canonicalized)
            mod_str = re.sub(r"___torch_mangle_[0-9]+\.", "", mod_str)
            check_canonicalized = torch._C._jit_pass_canonicalize(check_mod_func.graph)
            torch._C._jit_pass_inline(check_canonicalized)
            torch._C._jit_pass_erase_shape_information(check_canonicalized)
            check_str = str(check_canonicalized)
            check_str = re.sub(r"___torch_mangle_[0-9]+\.", "", check_str)

            graph_diff_errors = None
            if mod_str != check_str:
                import difflib

                graph_diff = difflib.ndiff(
                    mod_str.splitlines(True), check_str.splitlines(True)
                )
                graph_diff_errors = "Graph diff:\n" + indent("".join(graph_diff)) + "\n"

                for n_mod, n_check in zip(
                    mod_canonicalized.nodes(), check_canonicalized.nodes()
                ):
                    if str(n_mod) != str(n_check):
                        graph_diff_errors += "First diverging operator:\n"
                        node_diff = difflib.ndiff(
                            str(n_mod).splitlines(True), str(n_check).splitlines(True)
                        )
                        source_printout = (
                            "Node diff:\n" + indent("".join(node_diff)) + "\n"
                        )
                        mod_stack = n_mod.sourceRange()
                        if mod_stack:
                            source_printout += (
                                "Trace source location:\n" + indent(mod_stack) + "\n"
                            )
                        check_stack = n_check.sourceRange()
                        if check_stack:
                            source_printout += (
                                "Check source location:\n" + indent(check_stack) + "\n"
                            )
                        graph_diff_errors += source_printout

                        break  # For now, only print out the first pair of nodes that diverges

            tensor_compare_errors = None
            # Check Tensor-valued constant nodes
            for n_mod, n_check in zip(
                mod_canonicalized.nodes(), check_canonicalized.nodes()
            ):
                if n_mod.kind() != n_check.kind():
                    break  # Graphs have already diverged

                if n_mod.kind() == "prim::Constant" and not (
                    n_mod.mustBeNone() or n_check.mustBeNone()
                ):
                    if not n_mod.hasAttribute("value"):
                        continue
                    if n_mod.kindOf("value") != "t" or n_check.kindOf("value") != "t":
                        continue

                    mod_tensor_val = n_mod.t("value")
                    check_tensor_val = n_check.t("value")

                    try:
                        torch.testing.assert_close(mod_tensor_val, check_tensor_val, equal_nan=True)
                    except (RuntimeError, AssertionError) as e:
                        if tensor_compare_errors is None:
                            tensor_compare_errors = ""
                        tensor_compare_errors += "Node:\n" + indent(str(n_mod)) + "\n"
                        compare_stack = n_mod.sourceRange()
                        if compare_stack:
                            tensor_compare_errors += (
                                "Source Location:\n" + indent(compare_stack) + "\n"
                            )
                        tensor_compare_errors += "Comparison exception: " + indent(
                            str(e)
                        )

                        break  # For now, only print the first diverging pair

            return graph_diff_errors, tensor_compare_errors

        def wrap_retval(x):
            return x if isinstance(x, tuple) else (x,)

        def run_mod_and_filter_tensor_outputs(mod, inputs, running_what):
            try:
                outs = wrap_retval(mod(*_clone_inputs(inputs)))
                outs = [out for out in outs if isinstance(out, torch.Tensor)]
                return outs
            except Exception as e:
                graph_diff_errors, tensor_compare_errors = graph_diagnostic_info()
                msg = f"encountered an exception while running the {running_what} with test inputs.\nException:\n{indent(str(e))}"
                raise TracingCheckError(
                    graph_diff_errors,
                    tensor_compare_errors,
                    extra_msg=msg,
                ) from e

        has_warned = [False]

        def maybe_warn_nondeterministic():
            if has_warned[0]:
                return
            has_warned[0] = True
            nondeterm_ops = [
                op for op in traced_func.graph.nodes() if op.isNondeterministic()
            ]
            if len(nondeterm_ops) > 0:
                nondeterministic_ops_warning = "Trace had nondeterministic nodes. "
                nondeterministic_ops_warning += (
                    "Did you forget call .eval() on your model? Nodes:\n"
                )
                nondeterministic_ops_warning += "\n".join(
                    [indent(str(op)) for op in nondeterm_ops][:20]
                )
                nondeterministic_ops_warning += (
                    "\nThis may cause errors in trace checking. To disable trace checking,"
                    " pass check_trace=False to torch.jit.trace()"
                )
                warnings.warn(
                    nondeterministic_ops_warning, category=TracerWarning, stacklevel=5
                )

        def compare_outputs(original, reference, match_what):
            all_ok = True
            for i, (orig, ref) in enumerate(zip(original, reference)):
                try:
                    if orig.is_quantized:
                        orig = orig.dequantize()
                    if ref.is_quantized:
                        ref = ref.dequantize()
                    if orig.is_mkldnn:
                        orig = orig.to_dense()
                    if ref.is_mkldnn:
                        ref = ref.to_dense()
                    if ref.is_complex() or orig.is_complex():
                        torch.testing.assert_close(
                            orig.to(torch.cdouble),
                            ref.to(torch.cdouble),
                            rtol=check_tolerance,
                            atol=default_tolerances(orig, ref)[1],
                            equal_nan=True,
                        )
                    else:
                        if orig.is_mps or ref.is_mps:
                            torch.testing.assert_close(
                                orig.float(),
                                ref.float(),
                                rtol=check_tolerance,
                                atol=default_tolerances(orig, ref)[1],
                                equal_nan=True,
                            )
                        else:
                            torch.testing.assert_close(
                                orig.double(),
                                ref.double(),
                                rtol=check_tolerance,
                                atol=default_tolerances(orig, ref)[1],
                                equal_nan=True,
                            )
                except AssertionError as e:
                    maybe_warn_nondeterministic()
                    warnings.warn(
                        "Output nr "
                        + str(i + 1)
                        + ". of the traced function does not match "
                        "the corresponding output of the "
                        + match_what
                        + ". Detailed error:\n"
                        + str(e),
                        category=TracerWarning,
                        stacklevel=4,
                    )
                    all_ok = False

            return all_ok

        traced_outs = run_mod_and_filter_tensor_outputs(traced_func, inputs, "trace")
        fn_outs = run_mod_and_filter_tensor_outputs(func, inputs, "Python function")
        if compare_outputs(traced_outs, fn_outs, "Python function"):
            check_outs = run_mod_and_filter_tensor_outputs(
                check_mod_func, inputs, "repeated trace"
            )
            compare_outputs(traced_outs, check_outs, "repeated trace")

        diag_info = graph_diagnostic_info()
        if any(info is not None for info in diag_info):
            raise TracingCheckError(*diag_info)


class TracerWarning(Warning):
    @staticmethod
    def ignore_lib_warnings():
        # We ignore warnings from all submodules excluding the JIT, because we need them e.g. for _check_trace
        warnings.filterwarnings(
            "ignore", category=TracerWarning, module="torch.(?!jit)"
        )


# We ignore the tracer warnings coming form inside the library, because all our shape
# checks in nn will trigger them.
TracerWarning.ignore_lib_warnings()
torch._C._tracer_warn_use_python()


def make_tuple(example_inputs):
    if isinstance(example_inputs, (torch.Tensor, dict)):
        return (example_inputs,)
    # done primarily so that weird iterables fail here and not pybind11 code
    if not isinstance(example_inputs, tuple):
        return tuple(example_inputs)
    return example_inputs


def make_module(mod, _module_class, _compilation_unit):
    if isinstance(mod, ScriptModule):
        return mod
    elif torch._jit_internal.module_has_exports(mod):

        infer_methods_stubs_fn = torch.jit._recursive.make_stubs_from_exported_methods
        return torch.jit._recursive.create_script_module(
            mod,
            infer_methods_stubs_fn,
            share_types=False,
            is_tracing=True
        )
    else:
        if _module_class is None:
            _module_class = TopLevelTracedModule
        return _module_class(mod, _compilation_unit=_compilation_unit)


def wrap_check_inputs(check_inputs):
    if check_inputs is None:
        return None

    return [{"forward": c} for c in check_inputs]


def trace(
    func,
    example_inputs,
    optimize=None,
    check_trace=True,
    check_inputs=None,
    check_tolerance=1e-5,
    strict=True,
    _force_outplace=False,
    _module_class=None,
    _compilation_unit=_python_cu,
):
    """
    Trace a function and return an executable  or :class:`ScriptFunction`
    that will be optimized using just-in-time compilation. Tracing is ideal for
    code that operates only on ``Tensor``\\s and lists, dictionaries, and
    tuples of ``Tensor``\\s.

    Using `torch.jit.trace` and `torch.jit.trace_module`, you can turn an
    existing module or Python function into a TorchScript
    :class:`ScriptFunction` or :class:`ScriptModule`. You must provide example
    inputs, and we run the function, recording the operations performed on all
    the tensors.

    * The resulting recording of a standalone function produces `ScriptFunction`.
    * The resulting recording of `nn.Module.forward` or `nn.Module` produces
      `ScriptModule`.

    This module also contains any parameters that the original
    module had as well.

    Warning:
        Tracing only correctly records functions and modules which are not data
        dependent (e.g., do not have conditionals on data in tensors) and do not have
        any untracked external dependencies (e.g., perform input/output or
        access global variables). Tracing only records operations done when the given
        function is run on the given tensors. Therefore, the returned
        `ScriptModule` will always run the same traced graph on any input. This
        has some important implications when your module is expected to run
        different sets of operations, depending on the input and/or the module
        state. For example,

        * Tracing will not record any control-flow like if-statements or loops.
          When this control-flow is constant across your module, this is fine
          and it often inlines the control-flow decisions. But sometimes the
          control-flow is actually part of the model itself. For instance, a
          recurrent network is a loop over the (possibly dynamic) length of an
          input sequence.
        * In the returned :class:`ScriptModule`, operations that have different
          behaviors in ``training`` and ``eval`` modes will always behave as if
          it is in the mode it was in during tracing, no matter which mode the
          `ScriptModule` is in.

        In cases like these, tracing would not be appropriate and
        :func:`scripting <torch.jit.script>` is a better choice. If you trace
        such models, you may silently get incorrect results on subsequent
        invocations of the model. The tracer will try to emit warnings when
        doing something that may cause an incorrect trace to be produced.

    Args:
        func (callable or torch.nn.Module):  A Python function or `torch.nn.Module`
            that will be run with `example_inputs`. `func` arguments and return
            values  must be tensors or (possibly nested) tuples that contain
            tensors. When a module is passed `torch.jit.trace`, only the
            ``forward`` method is run and traced (see :func:`torch.jit.trace
            <torch.jit.trace_module>` for details).
        example_inputs (tuple or torch.Tensor):  A tuple of example inputs that
            will be passed to the function while tracing. The resulting trace
            can be run with inputs of different types and shapes assuming the
            traced operations support those types and shapes. `example_inputs`
            may also be a single Tensor in which case it is automatically
            wrapped in a tuple.

    Keyword arguments:
        check_trace (``bool``, optional): Check if the same inputs run through
            traced code produce the same outputs. Default: ``True``. You might want
            to disable this if, for example, your network contains non-
            deterministic ops or if you are sure that the network is correct despite
            a checker failure.

        check_inputs (list of tuples, optional): A list of tuples of input
            arguments that should be used to check the trace against what is
            expected. Each tuple is equivalent to a set of input arguments that
            would be specified in ``example_inputs``. For best results, pass in
            a set of checking inputs representative of the space of shapes and
            types of inputs you expect the network to see.  If not specified,
            the original ``example_inputs`` are used for checking
        check_tolerance (float, optional): Floating-point comparison tolerance
            to use in the checker procedure.  This can be used to relax the
            checker strictness in the event that results diverge numerically
            for a known reason, such as operator fusion.
        strict (``bool``, optional): run the tracer in a strict mode or not
            (default: ``True``). Only turn this off when you want the tracer to
            record your mutable container types (currently ``list``/``dict``)
            and you are sure that the container you are using in your
            problem is a ``constant`` structure and does not get used as
            control flow (if, for) conditions.

    Returns:
        If `func` is `nn.Module` or ``forward`` of `nn.Module`, `trace` returns
        a :class:`ScriptModule` object with a single ``forward`` method
        containing the traced code.  The returned `ScriptModule` will
        have the same set of sub-modules and parameters as the original
        ``nn.Module``.  If ``func`` is a standalone function, ``trace``
        returns `ScriptFunction`.

    Example (tracing a function):

    .. testcode::

        import torch

        def foo(x, y):
            return 2 * x + y

        # Run `foo` with the provided inputs and record the tensor operations
        traced_foo = torch.jit.trace(foo, (torch.rand(3), torch.rand(3)))

        # `traced_foo` can now be run with the TorchScript interpreter or saved
        # and loaded in a Python-free environment

    Example (tracing an existing module)::

        import torch
        import torch.nn as nn

        class Net(nn.Module):
            def __init__(self):
                super(Net, self).__init__()
                self.conv = nn.Conv2d(1, 1, 3)

            def forward(self, x):
                return self.conv(x)

        n = Net()
        example_weight = torch.rand(1, 1, 3, 3)
        example_forward_input = torch.rand(1, 1, 3, 3)

        # Trace a specific method and construct `ScriptModule` with
        # a single `forward` method
        module = torch.jit.trace(n.forward, example_forward_input)

        # Trace a module (implicitly traces `forward`) and construct a
        # `ScriptModule` with a single `forward` method
        module = torch.jit.trace(n, example_forward_input)

    """
    if not _enabled:
        return func
    if optimize is not None:
        warnings.warn(
            "`optimize` is deprecated and has no effect. Use `with torch.jit.optimized_execution() instead"
        )

    if isinstance(func, torch.jit.ScriptModule):
        # it is hard to trace it because the forward method on ScriptModule is already defined, so it
        # would result in an error.
        warnings.warn(
            "The input to trace is already a ScriptModule, tracing it is a no-op. Returning the object as is."
        )
        return func

    if isinstance(func, torch.nn.Module):
        return trace_module(
            func,
            {"forward": example_inputs},
            None,
            check_trace,
            wrap_check_inputs(check_inputs),
            check_tolerance,
            strict,
            _force_outplace,
            _module_class,
        )

    if (
        hasattr(func, "__self__")
        and isinstance(func.__self__, torch.nn.Module)
        and func.__name__ == "forward"
    ):
        return trace_module(
            func.__self__,
            {"forward": example_inputs},
            None,
            check_trace,
            wrap_check_inputs(check_inputs),
            check_tolerance,
            strict,
            _force_outplace,
            _module_class,
        )

    # Special case for common case of passing a single Tensor
    if isinstance(example_inputs, (torch.Tensor, dict)):
        example_inputs = (example_inputs,)
    # done primarily so that weird iterables fail here and not pybind11 code
    elif not isinstance(example_inputs, tuple):
        example_inputs = tuple(example_inputs)

    var_lookup_fn = _create_interpreter_name_lookup_fn(0)

    if hasattr(func, "__self__") and isinstance(func.__self__, torch.nn.Module):
        raise AttributeError(
            "trace doesn't support compiling individual module's functions.\n"
            "Please use trace_module"
        )

    name = _qualified_name(func)
    traced = torch._C._create_function_from_trace(
        name,
        func,
        example_inputs,
        var_lookup_fn,
        strict,
        _force_outplace,
        get_callable_argument_names(func)
    )

    # Check the trace against new traces created from user-specified inputs
    if check_trace:
        if check_inputs is not None:
            _check_trace(
                check_inputs,
                func,
                traced,
                check_tolerance,
                strict,
                _force_outplace,
                False,
                _module_class,
            )
        else:
            _check_trace(
                [example_inputs],
                func,
                traced,
                check_tolerance,
                strict,
                _force_outplace,
                False,
                _module_class,
            )

    return traced


_trace_module_map: Optional[Dict[Any, Any]] = None


def trace_module(
    mod,
    inputs,
    optimize=None,
    check_trace=True,
    check_inputs=None,
    check_tolerance=1e-5,
    strict=True,
    _force_outplace=False,
    _module_class=None,
    _compilation_unit=_python_cu,
):
    """
    Trace a module and return an executable :class:`ScriptModule` that will be optimized
    using just-in-time compilation. When a module is passed to :func:`torch.jit.trace <torch.jit.trace>`, only
    the ``forward`` method is run and traced. With ``trace_module``, you can specify a dictionary of
    method names to example inputs to trace (see the ``inputs``) argument below.

    See :func:`torch.jit.trace <torch.jit.trace>` for more information on tracing.

    Args:
        mod (torch.nn.Module):  A ``torch.nn.Module`` containing methods whose names are
                                specified in ``inputs``. The given methods will be compiled
                                as a part of a single `ScriptModule`.
        inputs (dict):  A dict containing sample inputs indexed by method names in ``mod``.
                                The inputs will be passed to methods whose names correspond to inputs'
                                keys while tracing.
                                ``{ 'forward' : example_forward_input, 'method2': example_method2_input}``
    Keyword arguments:
        check_trace (``bool``, optional): Check if the same inputs run through
                                      traced code produce the same outputs. Default: ``True``. You might want
                                      to disable this if, for example, your network contains non-
                                      deterministic ops or if you are sure that the network is correct despite
                                      a checker failure.

        check_inputs (list of dicts, optional): A list of dicts of input arguments that should be used
                                                 to check the trace against what is expected. Each tuple
                                                 is equivalent to a set of input arguments that would
                                                 be specified in ``inputs``. For best results, pass in a
                                                 set of checking inputs representative of the space of
                                                 shapes and types of inputs you expect the network to see.
                                                 If not specified, the original ``inputs`` are used for checking
        check_tolerance (float, optional): Floating-point comparison tolerance to use in the checker procedure.
                                           This can be used to relax the checker strictness in the event that
                                           results diverge numerically for a known reason, such as operator fusion.

    Returns:
        A :class:`ScriptModule` object with a single ``forward`` method containing the traced code.
        When ``func`` is a ``torch.nn.Module``, the returned :class:`ScriptModule` will have the same set of
        sub-modules and parameters as ``func``.

    Example (tracing a module with multiple methods)::

        import torch
        import torch.nn as nn

        class Net(nn.Module):
            def __init__(self):
                super(Net, self).__init__()
                self.conv = nn.Conv2d(1, 1, 3)

            def forward(self, x):
                return self.conv(x)

            def weighted_kernel_sum(self, weight):
                return weight * self.conv.weight


        n = Net()
        example_weight = torch.rand(1, 1, 3, 3)
        example_forward_input = torch.rand(1, 1, 3, 3)

        # Trace a specific method and construct `ScriptModule` with
        # a single `forward` method
        module = torch.jit.trace(n.forward, example_forward_input)

        # Trace a module (implicitly traces `forward`) and construct a
        # `ScriptModule` with a single `forward` method
        module = torch.jit.trace(n, example_forward_input)

        # Trace specific methods on a module (specified in `inputs`), constructs
        # a `ScriptModule` with `forward` and `weighted_kernel_sum` methods
        inputs = {'forward' : example_forward_input, 'weighted_kernel_sum' : example_weight}
        module = torch.jit.trace_module(n, inputs)

    """
    if not _enabled:
        return mod
    if optimize is not None:
        warnings.warn(
            "`optimize` is deprecated and has no effect. Use `with torch.jit.optimized_execution() instead"
        )

    var_lookup_fn = _create_interpreter_name_lookup_fn(0)

    if not isinstance(mod, torch.nn.Module):
        raise AttributeError("expected torch.nn.Module as the first argument")

    if not isinstance(inputs, dict):
        raise AttributeError("expected a dictionary of (method_name, input) pairs")

    old_module_map = torch.jit._trace._trace_module_map
    try:
        trace_module_map: Dict[Any, Any] = {}

        def register_submods(mod, prefix):
            for name, child in mod.named_children():
                submod_qualname = prefix + "." + name
                trace_module_map[child] = submod_qualname
                register_submods(child, submod_qualname)

        trace_module_map["__module"] = mod
        torch.jit._trace._trace_module_map = trace_module_map
        register_submods(mod, "__module")

        module = make_module(mod, _module_class, _compilation_unit)

        for method_name, example_inputs in inputs.items():
            if method_name == "forward":
                # "forward" is a special case because we need to trace
                # `Module.__call__`, which sets up some extra tracing, but uses
                # argument names of the real `Module.forward` method.
                func = mod
                forward_method = getattr(mod, method_name)
                argument_names = get_callable_argument_names(forward_method)
            else:
                func = getattr(mod, method_name)
                argument_names = get_callable_argument_names(func)

            example_inputs = make_tuple(example_inputs)

            module._c._create_method_from_trace(
                method_name,
                func,
                example_inputs,
                var_lookup_fn,
                strict,
                _force_outplace,
                argument_names,
            )
            check_trace_method = module._c._get_method(method_name)

            # Check the trace against new traces created from user-specified inputs
            if check_trace:
                if check_inputs is not None:
                    _check_trace(
                        check_inputs,
                        func,
                        check_trace_method,
                        check_tolerance,
                        strict,
                        _force_outplace,
                        True,
                        _module_class,
                    )
                else:
                    _check_trace(
                        [inputs],
                        func,
                        check_trace_method,
                        check_tolerance,
                        strict,
                        _force_outplace,
                        True,
                        _module_class,
                    )
    finally:
        torch.jit._trace._trace_module_map = old_module_map

    return module


def is_tracing():
    """
    Returns ``True`` in tracing (if a function is called during the tracing of
    code with ``torch.jit.trace``) and ``False`` otherwise.
    """
    if is_scripting():
        return False
    return torch._C._is_tracing()


class TracedModule(ScriptModule):
    _disable_script_meta = True

    def __init__(self, orig, id_set=None, _compilation_unit=None):
        # XXX: orig can be a nn.Module or a function!
        super(TracedModule, self).__init__()
        assert isinstance(orig, torch.nn.Module)

        # Copy a subset of `orig` to a temporary nn.Module.
        # This is a way to customize what will actually get compiled by create_script_module
        id_set = set()

        # This allows us to preserve the original module's qualified name by defining a new
        # type with the attribute _jit_override_qualname. In torch._jit_internal._qualified_name
        # we have a special case that will look up this attribute to override whatever qualname
        # we would get from the python type system
        class QualnameWrapper(torch.nn.Module):
            pass

        QualnameWrapper._jit_override_qualname = torch._jit_internal._qualified_name(  # type: ignore[attr-defined]
            type(orig)
        )

        tmp_module = QualnameWrapper()

        def check_unique(param):
            if param in id_set:
                raise ValueError(
                    "TracedModules don't support parameter sharing between modules"
                )
            id_set.add(param)
        tmp_module.training = orig.training

        for name, param in orig._parameters.items():
            if param is not None:
                tmp_module._parameters[name] = param
                check_unique(param)
        for name, buf in orig._buffers.items():
            if buf is not None:
                tmp_module._buffers[name] = buf
                check_unique(buf)
        for name, val in orig.__dict__.items():
            if (
                torch._C._jit_is_script_object(val)
                and name not in orig._parameters
                and name not in orig._buffers
            ):
                setattr(tmp_module, name, val)

        if orig._backward_hooks:
            raise ValueError(
                "Modules that have backward hooks assigned can't be compiled: "
                + str(orig)
            )

        for name, submodule in orig._modules.items():
            if submodule is None:
                continue
            tmp_module._modules[name] = make_module(
                submodule, TracedModule, _compilation_unit=None
            )

        script_module = torch.jit._recursive.create_script_module(
            tmp_module, lambda module: (), share_types=False, is_tracing=True
        )

        self.__dict__["_name"] = type(orig).__name__
        self.__dict__["_actual_script_module"] = script_module
        for name in ("_parameters", "_buffers", "_modules", "training"):
            delattr(self, name)

    def forward(self, *args, **kwargs):
        raise RuntimeError("Trace submodules cannot be called.")

    def __getattr__(self, attr):
        if "_actual_script_module" not in self.__dict__:
            return super(TracedModule, self).__getattr__(attr)
        return getattr(self._actual_script_module, attr)

    def __setattr__(self, attr, value):
        if "_actual_script_module" not in self.__dict__:
            return super(TracedModule, self).__setattr__(attr, value)
        setattr(self._actual_script_module, attr, value)

    def _get_name(self):
        return self._name

    def extra_repr(self):
        return "original_name={}".format(self._name)


class TopLevelTracedModule(TracedModule):
    forward = _CachedForward()

    def _reconstruct(self, cpp_module):
        """
        Re-construct an instance of TopLevelTracedModule using an instance of a C++ module.

        Args:
            cpp_module: The C++ module that this TopLevelTracedModule will be rebuilt around.
        """
        self.__dict__["_actual_script_module"]._reconstruct(cpp_module)


def _script_if_tracing(fn):
    @functools.wraps(fn)
    def wrapper(*args, **kwargs):
        if not is_tracing():
            # Not tracing, don't do anything
            return fn(*args, **kwargs)

        compiled_fn = script(wrapper.__original_fn)  # type: ignore[attr-defined]
        return compiled_fn(*args, **kwargs)

    wrapper.__original_fn = fn  # type: ignore[attr-defined]
    wrapper.__script_if_tracing_wrapper = True  # type: ignore[attr-defined]

    return wrapper


def _get_trace_graph(f, args=(), kwargs=None, strict=True, _force_outplace=False,
                     return_inputs=False, _return_inputs_states=False):
    """
    .. warning::
        This function is internal-only and should only be used by the ONNX
        exporter. If you are trying to get a graph through tracing, please go
        through the public API instead::

            trace = torch.jit.trace(nn.LSTMCell(), (input, hidden))
            trace_graph = trace.graph

    Trace a function or model, returning a tuple consisting of the both the
    *trace* of an execution, as well as the original return value. If return_inputs,
    also returns the trace inputs as part of the tuple

    Tracing is guaranteed not to change the semantics of the function/module
    that is traced.

    Args:
        f (torch.nn.Module or function): the function or module
            to be traced.
        args (tuple or Tensor): the positional arguments to pass to the
            function/module to be traced.  A non-tuple is assumed to
            be a single positional argument to be passed to the model.
        kwargs (dict): the keyword arguments to pass to the function/module
            to be traced.

    Example (trace a cell):

    .. testcode::

        trace = torch.jit.trace(nn.LSTMCell(), (input, hidden))
    """
    if kwargs is None:
        kwargs = {}
    if not isinstance(args, tuple):
        args = (args,)
    outs = ONNXTracedModule(f, strict, _force_outplace, return_inputs, _return_inputs_states)(*args, **kwargs)
    return outs