File size: 12,686 Bytes
9dd3461 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
#pragma once
#include <ATen/ATen.h>
#include <ATen/core/List.h>
#include <ATen/native/quantized/cpu/fbgemm_utils.h>
#include <ATen/native/quantized/cpu/QnnpackUtils.h>
#include <ATen/native/quantized/cpu/OnednnUtils.h>
#include <c10/util/irange.h>
#include <cpuinfo.h>
#include <tuple>
/* Convolution prepacked parameters serialization.
*
* Version 1
*
* - Fields:
* 1. weight
* 2. bias
* 3. stride x kSpatialDim
* 4. padding x kSpatialDim
* 5. dilation x kSpatialDim
* 6. groups
*
* Version 2
*
* - Fields:
* 0. version (string)
* 1. list of non-optional tensors
* 0: packed parameters (int16_t)
* - kSpatialDim
* - stride x kSpatialDim
* - padding x kSpatialDim
* - dilation x kSpatialDim
* - output_padding x kSpatialDim
* - groups
* - transpose (0 or 1)
* 1: weight
* 2. list of optional tensors
* 0: bias
*
* Version 3
*
* - Fields:
* 0. version (int64_t)
* 1. list of int64_t configuration values
* - kSpatialDim
* - stride x kSpatialDim
* - padding x kSpatialDim
* - dilation x kSpatialDim
* - output_padding x kSpatialDim
* - groups
* - flags (bitmask)
* - (1 << 0) transpose (1 = yes)
* 2. list of optional tensors
* 0: None (helps with type inference)
* 1: weight (this must be present)
* 2: bias
*/
using ConvParamsSerializationTypeV2 = std::tuple<
// version, for versions 2 and up
std::string,
// non-optional tensors
std::vector<at::Tensor>,
// optional tensors
std::vector<c10::optional<at::Tensor>>>;
using ConvParamsSerializationTypeV3 = std::tuple<
// version, int for versions 3 and up
int64_t,
// configuration values
std::vector<int64_t>,
// optional tensors
std::vector<c10::optional<at::Tensor>>>;
// Parses any historical conv packed params format into
// the current format.
template <uint32_t kSpatialDim>
ConvParamsSerializationTypeV3 parse_conv_serialized_state(c10::IValue v) {
// determine the version based on IValue contents
int version = -1;
if (v.isTuple()) {
const auto& elements = v.toTupleRef().elements();
if (elements.size() > 0) {
auto firstElement = elements[0];
if (firstElement.isTensor()) {
version = 1;
} else if (firstElement.isString()) {
std::string version_str = firstElement.toStringRef();
// note: not parsing the string to automatically handle bad
// inputs
if (version_str == "2") {
version = 2;
}
} else if (firstElement.isInt()) {
auto raw_version = firstElement.toInt();
if (raw_version == 3) {
version = 3;
}
}
}
}
TORCH_INTERNAL_ASSERT(version != -1, "Unable to parse serialization version");
if (version == 1) {
// version 1 - convert to version 3 manually
const auto& elements = v.toTupleRef().elements();
at::Tensor weight = elements[0].toTensor();
c10::optional<at::Tensor> bias = elements[1].toOptional<at::Tensor>();
torch::List<at::Tensor> stride_x_kSpatialDim = elements[2].toTensorList();
torch::List<at::Tensor> padding_x_kSpatialDim = elements[3].toTensorList();
torch::List<at::Tensor> dilation_x_kSpatialDim = elements[4].toTensorList();
at::Tensor groups = elements[5].toTensor();
std::vector<at::Tensor> non_optional;
std::vector<c10::optional<at::Tensor>> optional;
std::vector<int64_t> config_vals;
config_vals.push_back(kSpatialDim);
for (const auto i : c10::irange(stride_x_kSpatialDim.size())) {
auto stride = stride_x_kSpatialDim.get(i);
config_vals.push_back(stride[0].item<int16_t>());
}
for (const auto i : c10::irange(padding_x_kSpatialDim.size())) {
auto padding = padding_x_kSpatialDim.get(i);
config_vals.push_back(padding[0].item<int16_t>());
}
for (const auto i : c10::irange(dilation_x_kSpatialDim.size())) {
auto dilation = dilation_x_kSpatialDim.get(i);
config_vals.push_back(dilation[0].item<int16_t>());
}
// output_padding does not exist in v1, so we fill in a default value
for (const auto i : c10::irange(kSpatialDim)) {
(void)i; // Suppress unused variable
config_vals.push_back(0);
}
config_vals.push_back(groups[0].item<int16_t>());
// transpose does not exist in v1, so we fill in a default value
config_vals.push_back(0);
std::vector<c10::optional<at::Tensor>> tensors;
tensors.emplace_back();
tensors.emplace_back(weight);
tensors.emplace_back(bias);
int64_t version = 3;
return std::tie(version, config_vals, tensors);
} else if (version == 2) {
// version 2
const auto& elements = v.toTupleRef().elements();
std::vector<at::Tensor> non_optional = elements[1].toTensorList().vec();
std::vector<c10::optional<at::Tensor>> optional;
if (elements[2].isTensorList()) {
for (const auto& elem : elements[2].toTensorList()) {
optional.emplace_back(static_cast<at::Tensor>(elem));
}
} else {
for (const auto& elem : elements[2].toList()) {
optional.emplace_back(static_cast<c10::IValue>(elem).toOptional<at::Tensor>());
}
}
auto config_a = non_optional[0].accessor<int16_t, 1>();
std::vector<int64_t> config_vals;
config_vals.reserve(config_a.size(0));
for (const auto i : c10::irange(config_a.size(0))) {
config_vals.emplace_back(config_a[i]);
}
auto weight = non_optional[1];
auto bias = optional[0];
std::vector<c10::optional<at::Tensor>> tensors;
tensors.emplace_back();
tensors.emplace_back(weight);
tensors.emplace_back(bias);
int64_t version = 3;
return std::tie(version, config_vals, tensors);
} else if (version == 3) {
return v.to<ConvParamsSerializationTypeV3>();
} else {
TORCH_INTERNAL_ASSERT(false, "Unexpected serialized qconv version: ",
version);
}
}
#define QCONV_SERIALIZATION_VERSION 2
#if QCONV_SERIALIZATION_VERSION == 2
using ConvParamsSerializationType = ConvParamsSerializationTypeV2;
template <uint32_t kSpatialDim>
ConvParamsSerializationTypeV2 serialize_conv(
const c10::intrusive_ptr<ConvPackedParamsBase<kSpatialDim>>& params) {
std::string version = "2";
std::vector<at::Tensor> non_optional;
std::vector<c10::optional<at::Tensor>> optional;
// create a packed int8_t tensor for conv params
std::vector<int16_t> params_vec;
params_vec.push_back(kSpatialDim);
auto stride = params->stride().vec();
params_vec.insert(params_vec.end(), stride.begin(), stride.end());
auto padding = params->padding().vec();
params_vec.insert(params_vec.end(), padding.begin(), padding.end());
auto dilation = params->dilation().vec();
params_vec.insert(params_vec.end(), dilation.begin(), dilation.end());
auto output_padding = params->output_padding().vec();
params_vec.insert(params_vec.end(), output_padding.begin(),
output_padding.end());
params_vec.push_back(params->groups());
params_vec.push_back(params->transpose());
int64_t vec_size = params_vec.size();
at::Tensor params_tensor = at::from_blob(
params_vec.data(), {vec_size},
at::TensorOptions().dtype(at::kShort))
// clone to retain ownership of the data
.clone();
at::Tensor weight;
c10::optional<at::Tensor> bias;
std::tie(weight, bias) = params->unpack();
non_optional.emplace_back(std::move(params_tensor));
non_optional.emplace_back(std::move(weight));
optional.emplace_back(std::move(bias));
return std::tie(version, non_optional, optional);
}
#elif QCONV_SERIALIZATION_VERSION == 3
using ConvParamsSerializationType = ConvParamsSerializationTypeV3;
template <uint32_t kSpatialDim>
ConvParamsSerializationTypeV3 serialize_conv(
const c10::intrusive_ptr<ConvPackedParamsBase<kSpatialDim>>& params) {
std::vector<int64_t> config_vals;
config_vals.push_back(kSpatialDim);
auto stride = params->stride().vec();
config_vals.insert(config_vals.end(), stride.begin(), stride.end());
auto padding = params->padding().vec();
config_vals.insert(config_vals.end(), padding.begin(), padding.end());
auto dilation = params->dilation().vec();
config_vals.insert(config_vals.end(), dilation.begin(), dilation.end());
auto output_padding = params->output_padding().vec();
config_vals.insert(config_vals.end(), output_padding.begin(),
output_padding.end());
config_vals.push_back(params->groups());
config_vals.push_back(params->transpose());
at::Tensor weight;
c10::optional<at::Tensor> bias;
std::tie(weight, bias) = params->unpack();
std::vector<c10::optional<at::Tensor>> tensors;
tensors.emplace_back();
tensors.emplace_back(weight);
tensors.emplace_back(bias);
int64_t version = 3;
return std::tie(version, config_vals, tensors);
}
#else
#error "Invalid qconv serialization version."
#endif
template <uint32_t kSpatialDim>
c10::intrusive_ptr<ConvPackedParamsBase<kSpatialDim>> deserialize_conv(
ConvParamsSerializationTypeV3 state) {
int64_t version;
std::vector<int64_t> config_vals;
std::vector<c10::optional<at::Tensor>> tensors;
std::tie(version, config_vals, tensors) = state;
TORCH_INTERNAL_ASSERT(version == 3, "Unexpected serialized qconv version: ", version);
TORCH_CHECK(tensors.size() == 3, "Wrong number of tensors", tensors.size());
c10::optional<at::Tensor> weight = tensors[1];
c10::optional<at::Tensor> bias = tensors[2];
TORCH_INTERNAL_ASSERT(weight, "Weight should always be present in serialized qconv.");
torch::List<int64_t> stride, padding, output_padding, dilation;
// skip kSpatialDim
int idx = 1;
for (const auto i : c10::irange(kSpatialDim)) {
(void)i; // Suppress unused variable
stride.emplace_back(config_vals.at(idx));
idx++;
}
for (const auto i : c10::irange(kSpatialDim)) {
(void)i; // Suppress unused variable
padding.emplace_back(config_vals.at(idx));
idx++;
}
for (const auto i : c10::irange(kSpatialDim)) {
(void)i; // Suppress unused variable
dilation.emplace_back(config_vals.at(idx));
idx++;
}
for (const auto i : c10::irange(kSpatialDim)) {
(void)i; // Suppress unused variable
TORCH_INTERNAL_ASSERT(idx < static_cast<int64_t>(config_vals.size()),
"Unexpected index = ", idx, " for config_vals of size ",
config_vals.size());
output_padding.emplace_back(config_vals.at(idx));
idx++;
}
int64_t groups = config_vals.at(idx);
idx++;
int64_t flags = config_vals.at(idx);
idx++;
TORCH_INTERNAL_ASSERT(idx == static_cast<int64_t>(config_vals.size()),
"Unexpected length of config_vals, expected ",
idx,
" got ",
config_vals.size());
bool transpose = flags & (1 << 0);
int64_t other_flags = flags & ~(1 << 0);
TORCH_INTERNAL_ASSERT(other_flags == 0, "Unexpected flags set in ", flags, ".");
auto& ctx = at::globalContext();
#ifdef USE_FBGEMM
if (ctx.qEngine() == at::QEngine::X86) {
#if AT_MKLDNN_ENABLED()
bool use_onednn = onednn_utils::should_use_onednn_quant(
weight.value(), transpose, groups, output_padding);
if (use_onednn) {
return PackedConvWeightsOnednn<kSpatialDim>::prepack(
weight.value(),
bias,
stride,
padding,
output_padding,
dilation,
groups,
transpose
);
}
#endif
return PackedConvWeight<kSpatialDim>::prepack(
weight.value(),
bias,
stride,
padding,
output_padding,
dilation,
groups,
transpose
);
} // x86
#endif
#ifdef USE_FBGEMM
if (ctx.qEngine() == at::QEngine::FBGEMM) {
return PackedConvWeight<kSpatialDim>::prepack(
weight.value(),
bias,
stride,
padding,
output_padding,
dilation,
groups,
transpose
);
}
#endif // USE_FBGEMM
#ifdef USE_PYTORCH_QNNPACK
if (ctx.qEngine() == at::QEngine::QNNPACK) {
TORCH_CHECK(
kSpatialDim == 2,
"prepack/__setstate__: QNNPACK only supports Conv2d "
"now.");
return PackedConvWeightsQnnp<kSpatialDim>::prepack(
weight.value(),
bias,
stride,
padding,
output_padding,
dilation,
groups,
transpose
);
}
#endif // USE_PYTORCH_QNNPACK
#if AT_MKLDNN_ENABLED()
if (ctx.qEngine() == at::QEngine::ONEDNN) {
return PackedConvWeightsOnednn<kSpatialDim>::prepack(
weight.value(),
bias,
stride,
padding,
output_padding,
dilation,
groups,
transpose
);
}
#endif // AT_MKLDNN_ENABLED()
TORCH_CHECK(
false,
"Didn't find engine for when deserializing ConvPackedParams: ",
toString(ctx.qEngine()));
}
|