File size: 73,589 Bytes
9dd3461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
#pragma once

#include <ATen/core/Tensor.h>
#include <ATen/Dispatch.h>
#include <ATen/AccumulateType.h>
#include <ATen/ceil_div.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/DeviceUtils.cuh>
#include <ATen/native/cuda/block_reduce.cuh>
#include <ATen/native/cuda/DeviceSqrt.cuh>
#include <ATen/native/cuda/LaunchUtils.h>
#include <c10/macros/Macros.h>

#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/empty.h>
#include <ATen/ops/empty_like.h>
#include <ATen/ops/zeros.h>
#endif

namespace at { namespace native {

// The maximum number of threads in a block
#if defined(USE_ROCM)
constexpr int MAX_BLOCK_SIZE = 256;
#else
constexpr int MAX_BLOCK_SIZE = 512;
#endif

constexpr unsigned MAX_GRID_SIZE = 65535u;

// Number of threads in a block given an input size up to MAX_BLOCK_SIZE
static int getNumThreads(int nElem) {
#if defined(USE_ROCM)
  int threadSizes[5] = { 16, 32, 64, 128, MAX_BLOCK_SIZE };
#else
  int threadSizes[5] = { 32, 64, 128, 256, MAX_BLOCK_SIZE };
#endif
  for (int i = 0; i != 5; ++i) {
    if (nElem <= threadSizes[i]) {
      return threadSizes[i];
    }
  }
  return MAX_BLOCK_SIZE;
}

// Returns the index of the most significant 1 bit in `val`.
__device__ __forceinline__ int getMSB(int val) {
  return 31 - __clz(val);
}

template <typename scalar_t, typename accscalar_t>
struct Float2 {
  accscalar_t v1, v2;
  __device__ Float2() {}
  __device__ Float2(scalar_t v1, scalar_t v2) : v1(static_cast<accscalar_t>(v1)), v2(static_cast<accscalar_t>(v2)) {}
  __device__ Float2(int v) : v1(static_cast<accscalar_t>(v)), v2(static_cast<accscalar_t>(v)) {}
  __device__ Float2& operator+=(const Float2& a) {
    v1 += a.v1;
    v2 += a.v2;
    return *this;
  }
  __device__ friend Float2 operator+(Float2 a, const Float2& b) {
    a += b;
    return a;
  }
};

template <typename scalar_t, typename accscalar_t, typename PTA>
struct GradOp {
  __device__ GradOp(accscalar_t m, const PTA& i, const PTA& g)
    : mean(m), input(i), grad_output(g) {}
  __device__ __forceinline__ Float2<scalar_t, accscalar_t> operator()(int batch, int plane, int n) {
    accscalar_t g = grad_output[batch][plane][n];
    accscalar_t c = static_cast<accscalar_t>(input[batch][plane][n]) - mean;
    return Float2<scalar_t, accscalar_t>(g, g * c);
  }
  const accscalar_t mean;
  const PTA& input;
  const PTA& grad_output;
};

template <typename acc_t>
struct SumReduceOp {
    __device__ __forceinline__ acc_t combine(acc_t a, acc_t b) const { return a + b; }

    __device__ __forceinline__ acc_t warp_shfl_down(acc_t data, int offset) const {
        return WARP_SHFL_DOWN(data, offset);
    }
};

template <typename scalar_t, typename accscalar_t>
struct SumReduceOp<Float2<scalar_t, accscalar_t>> {
    using acc_t = Float2<scalar_t, accscalar_t>;

    __device__ __forceinline__ acc_t combine(acc_t a, acc_t b) const { return a + b; }

    __device__ __forceinline__ acc_t warp_shfl_down(acc_t data, int offset) const {
        return {WARP_SHFL_DOWN(data.v1, offset), WARP_SHFL_DOWN(data.v2, offset)};
    }
};

// Sum across (batch, x/y/z) applying Op() pointwise
// this works by first having each thread sum it's part
// of the data. Then there is a double-shuffling reduction.
// First each warp (of C10_WARP_SIZE threads) uses warpSum to reduce its
// data to the "warp leader", who writes its value into shared memory.
// Then a single warp reads the remaining (at most C10_WARP_SIZE) items
// and reduces them using another warpSum.
// The implicit assumption is that there are no more
// than C10_WARP_SIZE**2 threads.
template<typename scalar_t, typename Op, typename PTA>
__device__ scalar_t reduce(Op op, PTA tensor, int plane) {
  // first the reductions each thread does separately
  scalar_t sum = static_cast<scalar_t>(0);
  for (int batch = threadIdx.y; batch < tensor.size(0); batch += blockDim.y) {
    for (int x = threadIdx.x; x < tensor.size(2); x += blockDim.x) {
      sum += op(batch, plane, x);
    }
  }
  __shared__ scalar_t shared[C10_WARP_SIZE];
  SumReduceOp<scalar_t> reduce_op;
  sum = cuda_utils::BlockReduce<scalar_t, SumReduceOp<scalar_t>, cuda_utils::Block2D>(sum, reduce_op, 0, shared);
  if (threadIdx.x == 0 && threadIdx.y == 0) {
      shared[0] = sum;
  }
  __syncthreads();
  // Everyone picks it up, should be broadcast into the whole grad_input
  return shared[0];
}

constexpr int ELEMENTS_PER_ITER = 4; // enables concurrency within each thread to hide latency
constexpr int ELEMENTS_PER_THREAD = 16;
constexpr int OPTIMAL_TILE_W = 32;
constexpr int MAX_H_BLOCK = 128;

__host__ void flexible_launch_configs(
      const int reduction,
      const int stride,
      dim3 &block,
      dim3 &grid,
      const bool coop_flag = false) {
  int block_x = std::min(lastPow2(stride), OPTIMAL_TILE_W);
  int block_y = std::min(lastPow2(at::ceil_div(reduction , ELEMENTS_PER_THREAD)),
                         MAX_BLOCK_SIZE / block_x);
  if (block_x * block_y != MAX_BLOCK_SIZE) {
    block_x = std::min(lastPow2(stride), MAX_BLOCK_SIZE / block_y);
  }

  int grid_x = at::ceil_div(stride, block_x);
  int grid_y = std::min(at::ceil_div(reduction, block_y * ELEMENTS_PER_THREAD), MAX_H_BLOCK);
  if (coop_flag) {
    // it's not worth having a grid reduction if the reduction dimension is not big enough
    grid_y = grid_y < 8 ? 1 : grid_y;
  }

  block.x = block_x;
  block.y = block_y;
  block.z = 1;
  grid.x = grid_x;
  grid.y = grid_y;
  grid.z = 1;
}

template<typename T, typename C>
__device__ __forceinline__ void welford_merge_element(C& count,
                                                      T& mean,
                                                      T& m2n,
                                                      const C& count_new,
                                                      const T& mean_new,
                                                      const T& m2n_new) {
      T factor = T(1.0) / ::max(1, (count + count_new));
      T delta0 = mean - mean_new;
      mean = (mean_new * count_new + mean * count) * factor;
      m2n += m2n_new + delta0 * delta0 * count_new * count * factor;
      count += count_new;
}

// merge mean/m2n among threadIdx.y within block
template<typename T, typename C>
__device__ __forceinline__ void welford_merge_block_vertical(C& count,
                                                             T& mean,
                                                             T& m2n,
                                                             C* shmem_count,
                                                             T* shmem_mean,
                                                             T* shmem_m2n) {
  // write to shared memory
  auto address_base = threadIdx.x + threadIdx.y * blockDim.x;

#pragma unroll
  for (int offset = blockDim.y/2; offset > 0; offset >>= 1) {
    if (threadIdx.y < offset*2) {
      shmem_mean[address_base] = mean;
      shmem_m2n[address_base] = m2n;
      shmem_count[address_base] = count;
    }
    __syncthreads();
    if (threadIdx.y < offset && threadIdx.y + offset < blockDim.y) {
      auto address = address_base + offset * blockDim.x;
      // read shared memory back to register for reduction
      auto count_new = shmem_count[address];
      auto mean_new = shmem_mean[address];
      auto m2n_new = shmem_m2n[address];

      welford_merge_element(count, mean, m2n, count_new, mean_new, m2n_new);
    }
  }
}

template <typename input_scalar_t, typename stat_scalar_t, typename stat_accscalar_t, bool train, typename index_t>
__global__ void batch_norm_transform_input_kernel(
    const GenericPackedTensorAccessor<input_scalar_t, 3, RestrictPtrTraits, index_t> input,
    GenericPackedTensorAccessor<input_scalar_t, 3, RestrictPtrTraits, index_t> output,
    const GenericPackedTensorAccessor<typename std::conditional<train, stat_accscalar_t, stat_scalar_t>::type, 1, RestrictPtrTraits, index_t> mean_,
    const GenericPackedTensorAccessor<typename std::conditional<train, stat_accscalar_t, stat_scalar_t>::type, 1, RestrictPtrTraits, index_t> var_or_invstd,
    const GenericPackedTensorAccessor<stat_scalar_t, 1, RestrictPtrTraits, index_t> weight,
    const GenericPackedTensorAccessor<stat_scalar_t, 1, RestrictPtrTraits, index_t> bias,
    stat_accscalar_t epsilon) {

  index_t plane = blockIdx.x;

  if (plane >= input.size(1)) {
    return;
  }

  stat_accscalar_t gamma = weight.size(0) > 0 ? static_cast<stat_accscalar_t>(weight[plane]) : static_cast<stat_accscalar_t>(1);
  stat_accscalar_t beta = bias.size(0) > 0 ? static_cast<stat_accscalar_t>(bias[plane]) : static_cast<stat_accscalar_t>(0);
  stat_accscalar_t mean = static_cast<stat_accscalar_t>(mean_[plane]);
  stat_accscalar_t invstd;
  if (train) {
    invstd = var_or_invstd[plane];
  } else {
    invstd = static_cast<stat_accscalar_t>(1) / device_sqrt(static_cast<stat_accscalar_t>(var_or_invstd[plane]) + epsilon);
  }

  index_t bs = input.size(0);
  index_t fs = input.size(2);

  index_t bstep  = blockDim.y * gridDim.y;
  for (index_t batch = threadIdx.y + blockIdx.y * blockDim.y; batch < bs; batch += bstep) {
    auto o = output[batch][plane];
    auto i = input[batch][plane];
    for (index_t feature = threadIdx.x; feature < fs; feature += blockDim.x) {
      o[feature] = static_cast<input_scalar_t>(gamma * (i[feature] - mean) * invstd + beta);
    }
  }
}

struct InvStd {
  template <typename T>
  __device__ __forceinline__ T operator()(T var, double epsilon) const {
    T invstd = 0;
    if (var != static_cast<T>(0) || epsilon != static_cast<T>(0)) {
      invstd = static_cast<T>(1) / device_sqrt(var + epsilon);
    }
    return invstd;
  }
};

struct Var {
  template <typename T>
  __device__ __forceinline__ T operator()(T var, double epsilon) const {
    return var;
  }
};

template <typename VarTransform, typename input_scalar_t, typename stat_scalar_t, typename stat_accscalar_t, typename index_t>
__global__ void batch_norm_collect_statistics_kernel(
    const GenericPackedTensorAccessor<input_scalar_t, 3, RestrictPtrTraits, index_t> input,
    const stat_accscalar_t epsilon,
    const stat_accscalar_t momentum,
    GenericPackedTensorAccessor<stat_accscalar_t, 1, RestrictPtrTraits, index_t> save_mean,
    GenericPackedTensorAccessor<stat_accscalar_t, 1, RestrictPtrTraits, index_t> save_transformed_var) {

  __shared__ int shared_n[2 * 2 * C10_WARP_SIZE + C10_WARP_SIZE];

  int plane = blockIdx.x;
  int N = input.size(0) * input.size(2);
  int tid = threadIdx.x + threadIdx.y * blockDim.x;

  // Compute the mean and variance across (batch, x/y/z)
  // this uses the Welford (in the for loop)/parallel algorithm (to sum across the block)
  // https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Welford's_Online_algorithm
  // and the parallel algorithm on the same page.
  // We use two shuffles to reduce across the entire block.
  // https://devblogs.nvidia.com/faster-parallel-reductions-kepler/ has a description.
  stat_accscalar_t* shared_avg_var = (stat_accscalar_t*) &shared_n[C10_WARP_SIZE];

  // first the reductions each thread does separately
  stat_accscalar_t avg = 0;
  stat_accscalar_t var_n = 0;
  int n = 0;
  for (int batch = threadIdx.y; batch < input.size(0); batch += blockDim.y) {
    for (int x = threadIdx.x; x < input.size(2); x += blockDim.x) {
      stat_accscalar_t v = input[batch][plane][x];
      stat_accscalar_t d1 = v - avg;
      n++;
      avg += d1 / n;
      var_n += d1 * (v - avg);
    }
  }

  // first warpSum to get one value per thread to
  // one value per warp
  for (int i = 0; i < getMSB(C10_WARP_SIZE); ++i) {
    stat_accscalar_t o_avg = WARP_SHFL_XOR(avg, 1 << i, C10_WARP_SIZE);
    int o_n = WARP_SHFL_XOR(n, 1 << i, C10_WARP_SIZE);
    stat_accscalar_t factor = 1.0 / fmaxf(1.0, n+o_n);
    var_n += WARP_SHFL_XOR(var_n, 1 << i, C10_WARP_SIZE) + (avg - o_avg) * (avg - o_avg) * n * o_n * factor;
    avg = (n * avg + o_n * o_avg) * factor;
    n += o_n;
  }

  // this writes each warps  item into shared memory
  // there are at most C10_WARP_SIZE items left because
  // there are at most C10_WARP_SIZE**2 threads at the beginning
  __syncthreads();
  if (tid % C10_WARP_SIZE == 0) {
    shared_n[tid / C10_WARP_SIZE] = n;
    shared_avg_var[tid / C10_WARP_SIZE * 2] = avg;
    shared_avg_var[tid / C10_WARP_SIZE * 2 + 1] = var_n;
  }
  __syncthreads();
  // now have a second warpSum to reduce the intermediate values
  // from shared memory to a single number. The very first
  // thread writes it to shared memory.

  if (tid < C10_WARP_SIZE) {
    n = (tid < blockDim.x * blockDim.y / C10_WARP_SIZE ? shared_n[tid] : 0);
    avg = (tid < blockDim.x * blockDim.y  / C10_WARP_SIZE ? shared_avg_var[2 * tid] : stat_accscalar_t(0));
    var_n = (tid < blockDim.x * blockDim.y  / C10_WARP_SIZE ? shared_avg_var[2 * tid + 1] : stat_accscalar_t(0));
  }
  for (int i = 0; i < getMSB(C10_WARP_SIZE); ++i) {
    stat_accscalar_t o_avg = WARP_SHFL_XOR(avg, 1 << i, C10_WARP_SIZE);
    int o_n = WARP_SHFL_XOR(n, 1 << i, C10_WARP_SIZE);
    stat_accscalar_t factor = 1.0 / fmaxf(1.0, n+o_n);
    var_n += WARP_SHFL_XOR(var_n, 1 << i, C10_WARP_SIZE) + (avg - o_avg) * (avg - o_avg) * n * o_n * factor;
    avg = (n * avg + o_n * o_avg) * factor;
    n += o_n;
  }

  // Save the mean, variance, and moving averages
  if (tid == 0) {
    if (save_mean.data() != NULL) {
      save_mean[plane] = avg;
    }
    if (save_transformed_var.data() != NULL) {
      save_transformed_var[plane] = VarTransform{}(var_n / N, epsilon);
    }
  }

}

template <typename input_scalar_t, typename stat_scalar_t, typename stat_accscalar_t, typename index_t>
__global__ void batch_norm_backward_kernel(
    const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> input,
    const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_output,
    GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_input,
    GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> grad_weight,
    GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> grad_bias,
    const GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> weight,
    const GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> running_mean,
    const GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> running_var,
    const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> save_mean,
    const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> save_invstd,
    bool train,
    stat_accscalar_t epsilon) {

  index_t plane = blockIdx.x;
  index_t N = grad_output.size(0) * grad_output.size(2);

  stat_accscalar_t mean, invstd;
  if (train) {
    mean = save_mean[plane];
    invstd = save_invstd[plane];
  } else {
    mean = static_cast<stat_accscalar_t>(running_mean[plane]);
    invstd = static_cast<stat_accscalar_t>(1) / device_sqrt(static_cast<stat_accscalar_t>(running_var[plane]) + epsilon);
  }

  stat_accscalar_t weight_val = weight.size(0) > 0 ? static_cast<stat_accscalar_t>(weight[plane]) : stat_accscalar_t(1);
  stat_accscalar_t norm = stat_accscalar_t(1) / N;

  // Compute two values across (batch, x/y/z) in one pass:
  // 1. Sum(grad_output)
  // 2. DotProduct(input - mean, grad_output)
  GradOp<input_scalar_t, stat_accscalar_t, GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t>> g(mean, input, grad_output);
  auto res = reduce<Float2<input_scalar_t, stat_accscalar_t>>(g, grad_output, plane);

  stat_accscalar_t grad_output_sum = res.v1;
  stat_accscalar_t dot_p = res.v2;

  stat_accscalar_t grad_mean = grad_output_sum * norm;
  stat_accscalar_t proj_scale = dot_p * norm * invstd * invstd;
  stat_accscalar_t grad_scale = invstd * weight_val;

  if (grad_input.data() != NULL) {
    for (int batch = threadIdx.y; batch < grad_output.size(0); batch += blockDim.y) {
      for (int x = threadIdx.x; x < grad_output.size(2); x += blockDim.x) {
        input_scalar_t go = grad_output[batch][plane][x];
        if (train) {
          stat_accscalar_t inp = input[batch][plane][x];
          stat_accscalar_t proj = (inp - mean) * proj_scale;
          grad_input[batch][plane][x] = static_cast<input_scalar_t>((go - proj - grad_mean) * grad_scale);
        } else {
          grad_input[batch][plane][x] = static_cast<input_scalar_t>(go * grad_scale);
        }
      }
    }
  }

  if (grad_weight.size(0) > 0) {
    if (threadIdx.x == 0) {
      grad_weight[plane] = static_cast<stat_scalar_t>(dot_p * invstd);
    }
  }

  if (grad_bias.size(0) > 0) {
    if (threadIdx.x == 0) {
      grad_bias[plane] = static_cast<stat_scalar_t>(grad_output_sum);
    }
  }
}

template <typename scalar_t, typename accscalar_t, typename index_t>
__global__ void batch_norm_reduce_statistics_kernel(
    const GenericPackedTensorAccessor<accscalar_t, 2, RestrictPtrTraits, index_t> vec_mean,
    const GenericPackedTensorAccessor<accscalar_t, 2, RestrictPtrTraits, index_t> vec_invstd,
    GenericPackedTensorAccessor<accscalar_t, 1, RestrictPtrTraits, index_t> mean,
    GenericPackedTensorAccessor<accscalar_t, 1, RestrictPtrTraits, index_t> invstd,
    GenericPackedTensorAccessor<scalar_t, 1, RestrictPtrTraits, index_t> running_mean,
    GenericPackedTensorAccessor<scalar_t, 1, RestrictPtrTraits, index_t> running_var,
    const accscalar_t epsilon,
    const accscalar_t momentum,
    const GenericPackedTensorAccessor<scalar_t, 1, RestrictPtrTraits, index_t> counts) {

  int feature_size = vec_mean.size(1);
  int world_size = vec_mean.size(0);

  int bid = blockIdx.x;
  int tid = threadIdx.x;

  // first the reductions each thread does separately
  for (int i = bid*blockDim.x+tid; i < feature_size; i += gridDim.x*blockDim.x) {
    accscalar_t avg = 0;
    accscalar_t var_n = 0;
    index_t n = 0;
    for (int j = 0; j < world_size; j++) {
      scalar_t count = counts[j];
      accscalar_t m = vec_mean[j][i];
      accscalar_t v = accscalar_t(1.0) / (vec_invstd[j][i]);
      v = (v * v - epsilon) * count;
      accscalar_t factor = 1.0 / (n + count);
      var_n += v + (avg - m) * (avg - m) * n * count * factor;
      avg = n * factor * avg + count * factor * m;
      n += count;
    }
    mean[i] = avg;
    invstd[i] = static_cast<accscalar_t>(1) / device_sqrt(var_n / n + epsilon);
    if (running_mean.data() != NULL) {
      running_mean[i] = static_cast<scalar_t>((1 - momentum) * running_mean[i] + momentum * avg);
    }
    accscalar_t unbiasedVar = var_n / (n - 1);
    if (running_var.data() != NULL) {
      running_var[i] = static_cast<scalar_t>((1 - momentum) * running_var[i] + momentum * unbiasedVar);
    }
  }

}

template <typename input_scalar_t, typename stat_scalar_t, typename stat_accscalar_t, typename index_t>
__global__ void batch_norm_backward_reduce_kernel(
    const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> input,
    const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_output,
    GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> mean,
    GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> invstd,
    GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy,
    GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy_xmu,
    GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> grad_weight,
    GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> grad_bias) {

  index_t plane = blockIdx.x;

  stat_accscalar_t r_mean = mean[plane];
  stat_accscalar_t factor = invstd[plane];

  GradOp<input_scalar_t, stat_accscalar_t, GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t>> g(r_mean, input, grad_output);
  auto res = reduce<Float2<input_scalar_t, stat_accscalar_t>>(g, grad_output, plane);

  if (threadIdx.x == 0) {
    if (grad_weight.size(0) > 0) {
      grad_weight[plane] = static_cast<stat_scalar_t>(res.v2 * factor);
    }
    if (grad_bias.size(0) > 0) {
      grad_bias[plane] = static_cast<stat_scalar_t>(res.v1);
    }
    if (sum_dy.size(0) > 0) {
      sum_dy[plane] = static_cast<stat_accscalar_t>(res.v1);
    }
    if (sum_dy_xmu.size(0) > 0) {
      sum_dy_xmu[plane] = static_cast<stat_accscalar_t>(res.v2);
    }
  }
}

template <typename input_scalar_t, typename stat_scalar_t, typename stat_accscalar_t, typename index_t>
__device__ __forceinline__ void batch_norm_backward_elemt_kernel_impl(
    const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> input,
    const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_output,
    const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> mean,
    const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> invstd,
    const GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> weight,
    const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy,
    const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy_xmu,
    GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_input,
    const stat_accscalar_t norm_fct) {
  index_t plane = blockIdx.x;

  if (plane >= input.size(1)) {
    return;
  }

  stat_accscalar_t m_c = mean[plane];
  stat_accscalar_t m_dy_c = sum_dy[plane] * norm_fct;
  stat_accscalar_t factor_1_c = invstd[plane];
  stat_accscalar_t factor_2_c = weight.size(0) > 0 ? static_cast<stat_accscalar_t>(weight[plane]) : stat_accscalar_t(1);
  factor_2_c *= factor_1_c;
  factor_1_c = factor_1_c * factor_1_c * sum_dy_xmu[plane] * norm_fct;

  index_t bs = input.size(0);
  index_t fs = input.size(2);

  index_t bstep  = blockDim.y * gridDim.y;
  for (index_t batch = threadIdx.y + blockIdx.y * blockDim.y; batch < bs; batch += bstep) {
    auto g_i = grad_input[batch][plane];
    auto g_o = grad_output[batch][plane];
    auto i = input[batch][plane];
    for (index_t feature = threadIdx.x; feature < fs; feature += blockDim.x) {
      g_i[feature] = static_cast<input_scalar_t>((g_o[feature] - m_dy_c - (i[feature] - m_c) * factor_1_c) * factor_2_c);
    }
  }
}

template <typename input_scalar_t, typename stat_scalar_t, typename stat_accscalar_t, typename index_t>
__global__ void batch_norm_backward_elemt_kernel(
    const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> input,
    const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_output,
    const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> mean,
    const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> invstd,
    const GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> weight,
    const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy,
    const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy_xmu,
    GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_input,
    const int* __restrict__ numel, const int world_size) {
  int64_t total_numel = 0;
  for (int i = 0; i < world_size; i ++) {
    total_numel += numel[i];
  }

  const stat_accscalar_t norm_fct =
      static_cast<stat_accscalar_t>(1) / static_cast<stat_accscalar_t>(total_numel);
  batch_norm_backward_elemt_kernel_impl(
      input, grad_output, mean, invstd, weight, sum_dy, sum_dy_xmu, grad_input, norm_fct);
}

template <typename input_scalar_t, typename stat_scalar_t, typename stat_accscalar_t, typename index_t>
__global__ void batch_norm_backward_elemt_kernel(
    const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> input,
    const GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_output,
    const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> mean,
    const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> invstd,
    const GenericPackedTensorAccessor<stat_scalar_t, 1, DefaultPtrTraits, index_t> weight,
    const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy,
    const GenericPackedTensorAccessor<stat_accscalar_t, 1, DefaultPtrTraits, index_t> sum_dy_xmu,
    GenericPackedTensorAccessor<input_scalar_t, 3, DefaultPtrTraits, index_t> grad_input,
    const stat_accscalar_t norm_fct) {
  batch_norm_backward_elemt_kernel_impl(
      input, grad_output, mean, invstd, weight, sum_dy, sum_dy_xmu, grad_input, norm_fct);
}

template <typename scalar_t, int64_t dim, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
static GenericPackedTensorAccessor<scalar_t, dim, PtrTraits, index_t> get_packed_accessor(
    const Tensor& t, c10::string_view var_name) {
  constexpr auto expect_type = c10::CppTypeToScalarType<scalar_t>::value;
  const auto actual_type = t.scalar_type();
  TORCH_CHECK(actual_type == expect_type, "Expected ", var_name,
              " to have type ", expect_type, " but got ", actual_type);
  return t.generic_packed_accessor<scalar_t, dim, PtrTraits, index_t>();
}

template <typename scalar_t, int64_t dim, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
static GenericPackedTensorAccessor<scalar_t, dim, PtrTraits, index_t> packed_accessor_or_dummy(
    const Tensor& t, c10::string_view var_name) {
  if (!t.defined()) {
    const std::array<index_t, dim> zeros{{0}};
    return GenericPackedTensorAccessor<scalar_t, dim, PtrTraits, index_t>(nullptr, zeros.data(), zeros.data());
  }
  return get_packed_accessor<scalar_t, dim, PtrTraits, index_t>(t, var_name);
}

template<typename input_scalar_t, typename stat_scalar_t, typename index_t>
std::tuple<Tensor, Tensor, Tensor> batch_norm_backward_cuda_template(const Tensor& grad_out_, const Tensor& input_, const Tensor& weight_,
                                                                     const Tensor& running_mean_, const Tensor& running_var_, const Tensor& save_mean_, const Tensor& save_invstd_,
                                                                     bool train, double epsilon, std::array<bool,3> grad_input_mask) {

  using accscalar_t = at::acc_type<stat_scalar_t, true>;
  Tensor grad_input_;
  Tensor grad_input_reshaped;
  Tensor grad_weight_;
  Tensor grad_bias_;
  auto input_reshaped = input_.reshape({input_.size(0), input_.size(1), -1});
  auto grad_output_reshaped = grad_out_.reshape(input_reshaped.sizes());

  if (grad_input_mask[0]) {
    grad_input_ = at::empty_like(input_, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
    grad_input_reshaped = grad_input_.view(input_reshaped.sizes());
  }
  if (grad_input_mask[1]) {
    grad_weight_ = at::empty_like(weight_, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
  }
  if (grad_input_mask[2]) {
    grad_bias_ = at::empty_like(weight_, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
  }

  auto input = get_packed_accessor<
      input_scalar_t, 3, DefaultPtrTraits, index_t>(input_reshaped, "input");
  auto grad_output = get_packed_accessor<
      input_scalar_t, 3, DefaultPtrTraits, index_t>(grad_output_reshaped, "grad_output");
  auto grad_input = packed_accessor_or_dummy<
      input_scalar_t, 3, DefaultPtrTraits, index_t>(grad_input_reshaped, "grad_input");
  auto weight = packed_accessor_or_dummy<
      stat_scalar_t, 1, DefaultPtrTraits, index_t>(weight_, "weight");
  auto grad_weight = packed_accessor_or_dummy<
      stat_scalar_t, 1, DefaultPtrTraits, index_t>(grad_weight_, "grad_weight");
  auto grad_bias = packed_accessor_or_dummy<
      stat_scalar_t, 1, DefaultPtrTraits, index_t>(grad_bias_, "grad_bias");
  auto running_mean = packed_accessor_or_dummy<
      stat_scalar_t, 1, DefaultPtrTraits, index_t>(running_mean_, "running_mean");
  auto running_var = packed_accessor_or_dummy<
      stat_scalar_t, 1, DefaultPtrTraits, index_t>(running_var_, "running_var");
  auto save_mean = packed_accessor_or_dummy<
      accscalar_t, 1, DefaultPtrTraits, index_t>(save_mean_, "save_mean");
  auto save_invstd = packed_accessor_or_dummy<
      accscalar_t, 1, DefaultPtrTraits, index_t>(save_invstd_, "save_invstd");

  auto stream = at::cuda::getCurrentCUDAStream();
  dim3 blocks(input.size(1));
  int tf = getNumThreads(input.size(2));
  dim3 threads(tf, std::max<int>(1, MAX_BLOCK_SIZE/tf));

  batch_norm_backward_kernel<input_scalar_t, stat_scalar_t, accscalar_t, index_t> <<<blocks, threads, 0, stream>>>
    (input, grad_output, grad_input, grad_weight, grad_bias, weight, running_mean, running_var,
     save_mean, save_invstd, train, epsilon);
  C10_CUDA_KERNEL_LAUNCH_CHECK();

  return std::make_tuple(grad_input_, grad_weight_, grad_bias_);
}

template<typename scalar_t, typename index_t, typename VarTransform>
void batch_norm_stats_cuda_template(
    const Tensor& out_mean, const Tensor& out_invstd, const Tensor& input_, double epsilon) {

  using accscalar_t = at::acc_type<scalar_t, true>;
  int64_t n_input = input_.size(1);
  Tensor dummy_mean_;
  Tensor dummy_var_;
  auto input_reshaped = input_.reshape({input_.size(0), input_.size(1), -1}); // internally we merge the feature dimensions

  resize_output(out_mean, {n_input});
  resize_output(out_invstd, {n_input});
  auto input = get_packed_accessor<
      scalar_t, 3, RestrictPtrTraits, index_t>(input_reshaped, "input");
  TORCH_INTERNAL_ASSERT(out_invstd.dim() == 1 && out_invstd.is_contiguous() &&
                        out_invstd.sizes()[0]);
  TORCH_INTERNAL_ASSERT(out_mean.dim() == 1 && out_mean.is_contiguous() &&
                        out_mean.sizes()[0]);

  auto mean = packed_accessor_or_dummy<
      accscalar_t, 1, RestrictPtrTraits, index_t>(out_mean, "out_mean");
  auto invstd = packed_accessor_or_dummy<
      accscalar_t, 1, RestrictPtrTraits, index_t>(out_invstd, "out_invstd");
  auto stream = at::cuda::getCurrentCUDAStream();

  dim3 blocks(input.size(1));
  int tf = getNumThreads(input.size(2));
  dim3 threads(tf, std::max<int>(1, MAX_BLOCK_SIZE/tf));
  batch_norm_collect_statistics_kernel<VarTransform, scalar_t, scalar_t, accscalar_t, index_t> <<<blocks, threads, 0, stream>>>
    (input, epsilon, 0.0, mean, invstd);
  C10_CUDA_KERNEL_LAUNCH_CHECK();
}

template<typename input_scalar_t, typename stat_scalar_t, typename index_t>
void batch_norm_elemt_cuda_template(const Tensor& output_, const Tensor& input_, const Tensor& weight_,
                                    const Tensor& bias_, const Tensor& mean_, const Tensor& invstd_) {

  using stat_accscalar_t = at::acc_type<stat_scalar_t, true>;
  int64_t n_input = input_.size(1);
  auto input_reshaped = input_.reshape({input_.size(0), input_.size(1), -1}); // internally we merge the feature dimensions
  auto output_reshaped = output_.view({input_.size(0), input_.size(1), -1});

  auto input = get_packed_accessor<
      input_scalar_t, 3, RestrictPtrTraits, index_t>(input_reshaped, "input");
  auto output = get_packed_accessor<
      input_scalar_t, 3, RestrictPtrTraits, index_t>(output_reshaped, "output");
  auto weight = packed_accessor_or_dummy<
    stat_scalar_t, 1, RestrictPtrTraits, index_t>(weight_, "weight");
  auto bias = packed_accessor_or_dummy<
      stat_scalar_t, 1, RestrictPtrTraits, index_t>(bias_, "bias");
  auto mean = packed_accessor_or_dummy<
      stat_accscalar_t, 1, RestrictPtrTraits, index_t>(mean_, "mean");
  auto invstd = packed_accessor_or_dummy<
      stat_accscalar_t, 1, RestrictPtrTraits, index_t>(invstd_, "invstd");
  auto stream = at::cuda::getCurrentCUDAStream();

  // NOTE: We use transform_input_kernel in training mode, which ignores epsilon
  const double dummy_epsilon = 1e-5;

  // The input_transform kernel is pointwise, but we need to balance reading parameters (save_var/mean,
  // weight/bias) - which we only do once and have a for loop afterwards - with having many threads and blocks
  // and good occupancy. Quiet likely, we could go with even more blocks than 1024.
  // The various planes are independent, so we use blocks for them.
  int tf = std::max<int>(getNumThreads(input.size(2)/4),
                         std::min<int>(getNumThreads(input.size(2)), 64));
  int tb = std::max<int>(64/tf, 1);
  dim3 blocks_trans(input.size(1), std::max<int>(1, std::min<int>((256*1024)/input.size(1),
                                                                  (input.size(0)+tb-1)/tb)));
  blocks_trans.y = std::min(blocks_trans.y, MAX_GRID_SIZE);
  dim3 threads_trans(tf, tb);
  batch_norm_transform_input_kernel<input_scalar_t, stat_scalar_t, stat_accscalar_t, true, index_t> <<<blocks_trans, threads_trans, 0, stream>>>
    (input, output, mean, invstd, weight, bias, dummy_epsilon);
  C10_CUDA_KERNEL_LAUNCH_CHECK();
}

template<typename scalar_t, typename accscalar_t, typename index_t>
std::tuple<Tensor, Tensor> batch_norm_gather_stats_cuda_template(const Tensor& mean_, const Tensor& invstd_,
                                                                 const Tensor& running_mean_, const Tensor& running_var_,
                                                                 double momentum, double epsilon, const Tensor& counts_) {

  Tensor save_mean_;
  Tensor save_invstd_;

  auto features = mean_.size(1);
  auto input_options = mean_.options();
  if (mean_.scalar_type() == at::ScalarType::Half || mean_.scalar_type() == at::ScalarType::BFloat16) {
    input_options = input_options.dtype(ScalarType::Float);
  }
  save_mean_ = at::empty({features}, input_options);
  save_invstd_ = at::empty({features}, input_options);

  auto mean = packed_accessor_or_dummy<
      accscalar_t, 2, RestrictPtrTraits, index_t>(mean_, "mean");
  auto invstd = packed_accessor_or_dummy<
      accscalar_t, 2, RestrictPtrTraits, index_t>(invstd_, "invstd");
  auto running_mean = packed_accessor_or_dummy<
      scalar_t, 1, RestrictPtrTraits, index_t>(running_mean_, "running_mean");
  auto running_var = packed_accessor_or_dummy<
      scalar_t, 1, RestrictPtrTraits, index_t>(running_var_, "running_mean");
  auto counts = packed_accessor_or_dummy<
      scalar_t, 1, RestrictPtrTraits, index_t>(counts_, "counts");

  auto save_mean = get_packed_accessor<
      accscalar_t, 1, RestrictPtrTraits, index_t>(save_mean_, "save_mean");
  auto save_invstd = get_packed_accessor<
      accscalar_t, 1, RestrictPtrTraits, index_t>(save_invstd_, "save_invstd");
  auto stream = at::cuda::getCurrentCUDAStream();

  int block = getNumThreads(features);
  int grid = std::max<int>(1, features/block);
  batch_norm_reduce_statistics_kernel<scalar_t, accscalar_t, index_t> <<<grid, block, 0, stream>>>
      (mean, invstd, save_mean, save_invstd, running_mean, running_var, epsilon, momentum, counts);
  C10_CUDA_KERNEL_LAUNCH_CHECK();

  return std::make_tuple(save_mean_, save_invstd_);
}

template<typename input_scalar_t, typename stat_scalar_t, typename index_t>
std::tuple<Tensor, Tensor, Tensor, Tensor> batch_norm_backward_reduce_cuda_template(const Tensor& grad_out_, const Tensor& input_,
                                                                                    const Tensor& mean_, const Tensor& invstd_, const Tensor& weight_,
                                                                                    const bool input_g, const bool weight_g, const bool bias_g) {

  using stat_accscalar_t = at::acc_type<stat_scalar_t, true>;
  int64_t n_input = input_.size(1);
  Tensor sum_dy_;
  Tensor sum_dy_xmu_;
  Tensor grad_weight_;
  Tensor grad_bias_;
  auto input_reshaped = input_.reshape({input_.size(0), input_.size(1), -1}); // internally we merge the feature dimensions
  auto grad_output_reshaped = grad_out_.reshape(input_reshaped.sizes());

  if (input_g) {
    sum_dy_ = at::empty_like(mean_, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
    sum_dy_xmu_ = at::empty_like(mean_, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
  }
  if (weight_g) {
    grad_weight_ = at::empty({n_input}, weight_.options());
  }
  if (bias_g) {
    grad_bias_ = at::empty({n_input}, weight_.options());
  }

  auto input = get_packed_accessor<
      input_scalar_t, 3, DefaultPtrTraits, index_t>(input_reshaped, "input");
  auto grad_output = get_packed_accessor<
      input_scalar_t, 3, DefaultPtrTraits, index_t>(grad_output_reshaped, "grad_output");
  auto grad_weight = packed_accessor_or_dummy<
      stat_scalar_t, 1, DefaultPtrTraits, index_t>(grad_weight_, "grad_weight");
  auto grad_bias = packed_accessor_or_dummy<
      stat_scalar_t, 1, DefaultPtrTraits, index_t>(grad_bias_, "grad_bias");
  auto mean = packed_accessor_or_dummy<
      stat_accscalar_t, 1, DefaultPtrTraits, index_t>(mean_, "mean");
  auto invstd = packed_accessor_or_dummy<
      stat_accscalar_t, 1, DefaultPtrTraits, index_t>(invstd_, "invstd");
  auto sum_dy = packed_accessor_or_dummy<
      stat_accscalar_t, 1, DefaultPtrTraits, index_t>(sum_dy_, "sum_dy");
  auto sum_dy_xmu = packed_accessor_or_dummy<
      stat_accscalar_t, 1, DefaultPtrTraits, index_t>(sum_dy_xmu_, "sum_dy_xmu");

  auto batch_size = input_reshaped.size(0);
  auto feature_size = input_reshaped.size(2);
  auto stream = at::cuda::getCurrentCUDAStream();

  int warp_size = at::cuda::warp_size();
  int block_y = std::min<int>(lastPow2(batch_size), MAX_BLOCK_SIZE/warp_size);
  // We want block_x to be at least a warp width
  int block_x = std::min<int>(std::max<int>(getNumThreads(feature_size), warp_size), MAX_BLOCK_SIZE/block_y);
  const dim3 block(block_x, block_y);
  const dim3 grid(n_input);

  batch_norm_backward_reduce_kernel<input_scalar_t, stat_scalar_t, stat_accscalar_t, index_t> <<<grid, block, 0, stream>>>
    (input, grad_output, mean, invstd, sum_dy, sum_dy_xmu, grad_weight, grad_bias);
  C10_CUDA_KERNEL_LAUNCH_CHECK();

  return std::make_tuple(sum_dy_, sum_dy_xmu_, grad_weight_, grad_bias_);
}

template<typename input_scalar_t, typename stat_scalar_t, typename index_t>
Tensor batch_norm_backward_elemt_cuda_template(const Tensor& grad_out_, const Tensor& input_,
                                               const Tensor& mean_, const Tensor& invstd_,
                                               const Tensor& weight_, const Tensor& sum_dy_, const Tensor& sum_dy_xmu_) {

  using stat_accscalar_t = at::acc_type<stat_scalar_t, true>;
  int64_t n_input = input_.size(1);
  auto input_reshaped = input_.reshape({input_.size(0), input_.size(1), -1}); // internally we merge the feature dimensions
  auto grad_output_reshaped = grad_out_.reshape(input_reshaped.sizes());
  auto grad_input_reshaped = at::empty_like(input_reshaped, LEGACY_CONTIGUOUS_MEMORY_FORMAT);

  auto input = get_packed_accessor<
      input_scalar_t, 3, DefaultPtrTraits, index_t>(input_reshaped, "input");
  auto grad_input = get_packed_accessor<
      input_scalar_t, 3, DefaultPtrTraits, index_t>(grad_input_reshaped, "grad_input");
  auto grad_output = get_packed_accessor<
      input_scalar_t, 3, DefaultPtrTraits, index_t>(grad_output_reshaped, "grad_output");
  auto mean = packed_accessor_or_dummy<
      stat_accscalar_t, 1, DefaultPtrTraits, index_t>(mean_, "mean");
  auto invstd = packed_accessor_or_dummy<
      stat_accscalar_t, 1, DefaultPtrTraits, index_t>(invstd_, "invstd");
  auto weight = packed_accessor_or_dummy<
      stat_scalar_t, 1, DefaultPtrTraits, index_t>(weight_, "weight");
  auto sum_dy = packed_accessor_or_dummy<
      stat_accscalar_t, 1, DefaultPtrTraits, index_t>(sum_dy_, "sum_dy");
  auto sum_dy_xmu = packed_accessor_or_dummy<
      stat_accscalar_t, 1, DefaultPtrTraits, index_t>(sum_dy_xmu_, "sum_dy_xmu");

  auto stream = at::cuda::getCurrentCUDAStream();

  // The kernel is pointwise, but we need to balance reading parameters (save_var/mean,
  // weight/bias) - which we only do once and have a for loop afterwards - with having many threads and blocks
  // and good occupancy. Quiet likely, we could go with even more blocks than 1024.
  // The various planes are independent, so we use blocks for them.
  int tf = std::max<int>(getNumThreads(input.size(2)/4),
                         std::min<int>(getNumThreads(input.size(2)), 64));
  int tb = std::max<int>(64/tf, 1);
  dim3 blocks_trans(input.size(1), std::max<int>(1, std::min<int>((256*1024)/input.size(1),
                                                                  (input.size(0)+tb-1)/tb)));
  blocks_trans.y = std::min(blocks_trans.y, MAX_GRID_SIZE);
  dim3 threads_trans(tf, tb);
  auto reduction_size = input_.numel() / n_input;
  auto norm_fct = static_cast<stat_accscalar_t>(1.0 / reduction_size);
  batch_norm_backward_elemt_kernel<input_scalar_t, stat_scalar_t, stat_accscalar_t, index_t>
      <<<blocks_trans, threads_trans, 0, stream>>>
      (input, grad_output, mean, invstd, weight, sum_dy, sum_dy_xmu, grad_input, norm_fct);
  C10_CUDA_KERNEL_LAUNCH_CHECK();

  return grad_input_reshaped.view(input_.sizes());
}

template<typename input_scalar_t, typename stat_scalar_t, typename index_t>
Tensor batch_norm_backward_elemt_cuda_template(const Tensor& grad_out_, const Tensor& input_,
                                               const Tensor& mean_, const Tensor& invstd_,
                                               const Tensor& weight_, const Tensor& sum_dy_, const Tensor& sum_dy_xmu_, const Tensor& count) {

  using stat_accscalar_t = at::acc_type<stat_scalar_t, true>;
  int64_t n_input = input_.size(1);
  auto input_reshaped = input_.reshape({input_.size(0), input_.size(1), -1}); // internally we merge the feature dimensions
  auto grad_output_reshaped = grad_out_.reshape(input_reshaped.sizes());
  auto grad_input_reshaped = at::empty_like(input_reshaped, LEGACY_CONTIGUOUS_MEMORY_FORMAT);

  auto input = get_packed_accessor<
      input_scalar_t, 3, DefaultPtrTraits, index_t>(input_reshaped, "input");
  auto grad_input = get_packed_accessor<
      input_scalar_t, 3, DefaultPtrTraits, index_t>(grad_input_reshaped, "grad_input");
  auto grad_output = get_packed_accessor<
      input_scalar_t, 3, DefaultPtrTraits, index_t>(grad_output_reshaped, "grad_output");
  auto mean = packed_accessor_or_dummy<
      stat_accscalar_t, 1, DefaultPtrTraits, index_t>(mean_, "mean");
  auto invstd = packed_accessor_or_dummy<
      stat_accscalar_t, 1, DefaultPtrTraits, index_t>(invstd_, "invstd");
  auto weight = packed_accessor_or_dummy<
      stat_scalar_t, 1, DefaultPtrTraits, index_t>(weight_, "weight");
  auto sum_dy = packed_accessor_or_dummy<
      stat_accscalar_t, 1, DefaultPtrTraits, index_t>(sum_dy_, "sum_dy");
  auto sum_dy_xmu = packed_accessor_or_dummy<
      stat_accscalar_t, 1, DefaultPtrTraits, index_t>(sum_dy_xmu_, "sum_dy_xmu");

  auto stream = at::cuda::getCurrentCUDAStream();

  // The kernel is pointwise, but we need to balance reading parameters (save_var/mean,
  // weight/bias) - which we only do once and have a for loop afterwards - with having many threads and blocks
  // and good occupancy. Quiet likely, we could go with even more blocks than 1024.
  // The various planes are independent, so we use blocks for them.
  int tf = std::max<int>(getNumThreads(input.size(2)/4),
                         std::min<int>(getNumThreads(input.size(2)), 64));
  int tb = std::max<int>(64/tf, 1);
  dim3 blocks_trans(input.size(1), std::max<int>(1, std::min<int>((256*1024)/input.size(1),
                                                                  (input.size(0)+tb-1)/tb)));
  blocks_trans.y = std::min(blocks_trans.y, MAX_GRID_SIZE);
  dim3 threads_trans(tf, tb);
  batch_norm_backward_elemt_kernel<input_scalar_t, stat_scalar_t, stat_accscalar_t, index_t> <<<blocks_trans, threads_trans, 0, stream>>>
    (input, grad_output, mean, invstd, weight, sum_dy, sum_dy_xmu, grad_input, count.data_ptr<int>(), count.numel());
  C10_CUDA_KERNEL_LAUNCH_CHECK();

  return grad_input_reshaped.view(input_.sizes());
}

// welford kernel for c last tensor calculating mean/biased_variance/unbiased_variance
// original apex name: welford_kernel_c_last
template
   <typename VarTransform,
    typename scalar_t,
    typename accscalar_t,
    int PARALLEL_LOADS>
__global__ void
batch_norm_collect_statistics_channels_last_kernel(
      const scalar_t* __restrict__ input,
      accscalar_t* __restrict__ out_mean,
      accscalar_t* __restrict__ out_invstd,
      volatile accscalar_t* staging_data,
      int* semaphores,
      const int reduction_size,
      const int stride,
      accscalar_t epsilon) {
  // hide latency with concurrency
  accscalar_t x_mean[PARALLEL_LOADS];
  accscalar_t m_2_n[PARALLEL_LOADS];
  int count[PARALLEL_LOADS];

#pragma unroll
  for (int i = 0; i < PARALLEL_LOADS; i++) {
    x_mean[i] = accscalar_t(0);
    m_2_n[i] = accscalar_t(0);
    count[i] = accscalar_t(0);
  }
  // tensor dimension (m,c)

  // loop along m dimension
  int inner_loop_stride = blockDim.y * gridDim.y;

  // offset along m dimension
  int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
  int c_offset = blockIdx.x * blockDim.x + threadIdx.x;

  int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
  int address_base = m_offset * stride + c_offset;
  int address_increment = inner_loop_stride * stride;

  for (int i = 0; i < loop_count; i++) {
    accscalar_t x_math[PARALLEL_LOADS];
    accscalar_t x_count_inv[PARALLEL_LOADS];
    accscalar_t is_valid[PARALLEL_LOADS];

    // load multiple data in
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      if (c_offset < stride && m_offset < reduction_size) {
        x_math[j] = input[address_base];
        count[j]++;
        x_count_inv[j] = accscalar_t(1) / count[j];
        is_valid[j] = accscalar_t(1);
      } else {
        x_math[j] = accscalar_t(0);
        x_count_inv[j] = accscalar_t(0);
        is_valid[j] = accscalar_t(0);
      }
      m_offset += inner_loop_stride;
      address_base += address_increment;
    }

    // calculate mean/m2n with welford
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      accscalar_t delta0 = x_math[j] - x_mean[j];
      x_mean[j] += delta0 * x_count_inv[j];
      accscalar_t delta1 = x_math[j] - x_mean[j];
      m_2_n[j] += delta0 * delta1 * is_valid[j];
    }
  }

  // thread reduction to accumulate mean/m_2_n/count between PARALLEL_LOADS
#pragma unroll
  for (int j = 1; j < PARALLEL_LOADS; j++) {
    welford_merge_element(count[0], x_mean[0], m_2_n[0], count[j], x_mean[j], m_2_n[j]);
  }

  // release x_mean / m_2_n
  auto mean_th = x_mean[0];
  auto m2_th = m_2_n[0];
  auto count_th = count[0];

  // block-wise reduction with shared memory (since reduction cannot be done within a warp)
  static __shared__ accscalar_t shmem_mean[MAX_BLOCK_SIZE];
  static __shared__ accscalar_t shmem_m2n[MAX_BLOCK_SIZE];
  static __shared__ int shmem_count[MAX_BLOCK_SIZE];

  welford_merge_block_vertical(count_th, mean_th, m2_th, shmem_count, shmem_mean, shmem_m2n);

  if (gridDim.y > 1) {
    volatile accscalar_t* staging_mean = staging_data;
    volatile accscalar_t* staging_m2n = &staging_data[stride*gridDim.y];
    volatile int* staging_count = reinterpret_cast<volatile int*>(&staging_m2n[stride*gridDim.y]);

    address_base = c_offset + blockIdx.y * stride;
    // write data to staging_data;
    if (threadIdx.y == 0 && c_offset < stride) {
      staging_mean[address_base] = mean_th;
      staging_m2n[address_base] = m2_th;
      staging_count[address_base] = count_th;
    }

    __threadfence();
    __syncthreads(); // ensuring writes to staging_ is visible to all blocks

    __shared__ bool is_last_block_done;
    // mark block done
    if (threadIdx.x == 0 && threadIdx.y == 0) {
      int old = atomicAdd(&semaphores[blockIdx.x], 1);
      is_last_block_done = (old == (gridDim.y-1));
    }

    __syncthreads();

    // check that all data is now available in global memory
    if (is_last_block_done) {
      count_th = 0;
      mean_th = accscalar_t(0.0);
      m2_th = accscalar_t(0.0);

      for (int y = threadIdx.y; y < gridDim.y; y += blockDim.y) {
        address_base = c_offset + y * stride;
        int count_new = c_offset < stride ? staging_count[address_base] : 0;
        accscalar_t mean_new = c_offset < stride ? staging_mean[address_base] : accscalar_t(0.0);
        accscalar_t m2n_new = c_offset < stride ? staging_m2n[address_base] : accscalar_t(0.0);

        welford_merge_element(count_th, mean_th, m2_th, count_new, mean_new, m2n_new);
      }

      welford_merge_block_vertical(count_th, mean_th, m2_th, shmem_count, shmem_mean, shmem_m2n);
      if (threadIdx.y == 0 && c_offset < stride) {
        out_mean[c_offset] = static_cast<accscalar_t>(mean_th);
        out_invstd[c_offset] = VarTransform{}(m2_th/count_th, epsilon);
      }
    }
  } else {
    if (blockIdx.y == 0 && threadIdx.y == 0 && c_offset < stride) {
      out_mean[c_offset] = static_cast<accscalar_t>(mean_th);
      out_invstd[c_offset] = VarTransform{}(m2_th/count_th, epsilon);
    }
  }
}

// elementwise BN kernel
// original apex name: batchnorm_forward_c_last_kernel
template <
    typename scalar_t,
    typename accscalar_t,
    typename layerscalar_t,
    int PARALLEL_LOADS>
__global__ void batch_norm_transform_input_channels_last_kernel(
      const scalar_t* __restrict__ input,
      const scalar_t* __restrict__ z,
      const accscalar_t* __restrict__ mean,
      const accscalar_t* __restrict__ inv_std,
      const layerscalar_t* __restrict__ weight,
      const layerscalar_t* __restrict__ shift,
      scalar_t* __restrict__ out,
      const int reduction_size,
      const int stride,
      const bool fuse_relu) {
  // tensor dimension (m,c)
  // loop along m dimension
  int inner_loop_stride = blockDim.y * gridDim.y;

  // offset along m dimension
  int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
  int c_offset = blockIdx.x * blockDim.x + threadIdx.x;

  if (c_offset >= stride || m_offset >= reduction_size) {
    return;
  }

  auto m_c = mean[c_offset];
  auto inv_std_c = static_cast<accscalar_t>(inv_std[c_offset]);
  auto w_c = weight == nullptr ? accscalar_t(1.0) : static_cast<accscalar_t>(weight[c_offset]);
  auto s_c = shift == nullptr ? accscalar_t(0.0) : static_cast<accscalar_t>(shift[c_offset]);

  int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
  int address_base = m_offset * stride + c_offset;
  int address_increment = inner_loop_stride * stride;

  for (int i = 0; i < loop_count; i++) {
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      if (c_offset < stride && m_offset < reduction_size) {
        auto tmp = w_c * (static_cast<accscalar_t>(input[address_base]) - m_c ) * inv_std_c + s_c;
        if (z != nullptr) {
          tmp += z[address_base];
        }
        out[address_base] = (fuse_relu && tmp <= accscalar_t(0.0) ? scalar_t(0.0) : static_cast<scalar_t>(tmp));
      }
      m_offset += inner_loop_stride;
      address_base += address_increment;
    }
  }
}

template<typename T>
__device__ __forceinline__ void merge_block_vertical_backward(T& sum_dy,
    T& sum_dy_xmu,
    T* shmem_sum_dy,
    T* shmem_sum_dy_xmu) {
  // write to shared memory
  auto address_base = threadIdx.x + threadIdx.y * blockDim.x;

#pragma unroll
  for (int offset = blockDim.y/2; offset > 0; offset >>= 1) {
    if (threadIdx.y < offset*2) {
      shmem_sum_dy[address_base] = sum_dy;
      shmem_sum_dy_xmu[address_base] = sum_dy_xmu;
    }
    __syncthreads();
    if (threadIdx.y < offset && threadIdx.y + offset < blockDim.y) {
      auto address = address_base + offset * blockDim.x;

      sum_dy += shmem_sum_dy[address];
      sum_dy_xmu += shmem_sum_dy_xmu[address];
    }
  }
}

// batchnorm backward kernel for c last tensor
// original apex name: reduce_bn_c_last_kernel
template <
    int PARALLEL_LOADS,
    typename scalar_t,
    typename accscalar_t,
    typename layerscalar_t>
__global__ void batch_norm_backward_reduce_channels_last_kernel(
      const scalar_t* __restrict__ input,
      const scalar_t* __restrict__ grad_output,
      const accscalar_t* __restrict__ mean,
      const accscalar_t* __restrict__ inv_std,
      accscalar_t* __restrict__ sum_dy_o,
      accscalar_t* __restrict__ sum_dy_xmu_o,
      layerscalar_t* __restrict__ grad_weight,
      layerscalar_t* __restrict__ grad_bias,
      volatile accscalar_t* staging_data,
      int* semaphores,
      const int reduction_size,
      const int stride) {

  // hide latency with concurrency
  accscalar_t sum_dy[PARALLEL_LOADS];
  accscalar_t sum_dy_xmu[PARALLEL_LOADS];

#pragma unroll
  for (int i = 0; i < PARALLEL_LOADS; i++) {
    sum_dy[i] = accscalar_t(0);
    sum_dy_xmu[i] = accscalar_t(0);
  }
  // tensor dimension (m,c)

  // loop along m dimension
  int inner_loop_stride = blockDim.y * gridDim.y;

  // offset along m dimension
  int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
  int c_offset = blockIdx.x * blockDim.x + threadIdx.x;

  if (c_offset >= stride || m_offset >= reduction_size) {
    return;
  }

  int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
  int address_base = m_offset * stride + c_offset;
  int address_increment = inner_loop_stride * stride;

  auto r_mean = mean[c_offset];
  auto factor = inv_std[c_offset];

  for (int i = 0; i < loop_count; i++) {
    accscalar_t x_input[PARALLEL_LOADS];
    accscalar_t x_grad_output[PARALLEL_LOADS];

    // load multiple data in
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      if (c_offset < stride && m_offset < reduction_size) {
        x_input[j] = input[address_base];
        x_grad_output[j] = grad_output[address_base];
      } else {
        x_input[j] = accscalar_t(0);
        x_grad_output[j] = accscalar_t(0);
      }
      m_offset += inner_loop_stride;
      address_base += address_increment;
    }

    // calculate sum_dy / sum_dy_xmu
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      sum_dy[j] += x_grad_output[j];
      sum_dy_xmu[j] += x_grad_output[j] * (x_input[j] - r_mean);
    }
  }

  // thread reduction to accumulate sum_dy / sum_dy_xmu between PARALLEL_LOADS
#pragma unroll
  for (int j = 1; j < PARALLEL_LOADS; j++) {
    sum_dy[0] += sum_dy[j];
    sum_dy_xmu[0] += sum_dy_xmu[j];
  }

  // release array of registers
  auto sum_dy_th = sum_dy[0];
  auto sum_dy_xmu_th = sum_dy_xmu[0];

  // block-wise reduction with shared memory (since reduction cannot be done within a warp)
  static __shared__ accscalar_t shmem_sum_dy[MAX_BLOCK_SIZE];
  static __shared__ accscalar_t shmem_sum_dy_xmu[MAX_BLOCK_SIZE];

  merge_block_vertical_backward(sum_dy_th, sum_dy_xmu_th, shmem_sum_dy, shmem_sum_dy_xmu);

  if (gridDim.y > 1) {
    volatile accscalar_t* staging_sum_dy = staging_data;
    volatile accscalar_t* staging_sum_dy_xmu = &staging_data[stride*gridDim.y];

    address_base = c_offset + blockIdx.y * stride;
    // write data to staging_data;
    if (threadIdx.y == 0 && c_offset < stride) {
      staging_sum_dy[address_base] = sum_dy_th;
      staging_sum_dy_xmu[address_base] = sum_dy_xmu_th;
    }

    __threadfence();
    __syncthreads(); // ensuring writes to staging_ is visible to all blocks

    __shared__ bool is_last_block_done;
    // mark block done
    if (threadIdx.x == 0 && threadIdx.y == 0) {
      int old = atomicAdd(&semaphores[blockIdx.x], 1);
      is_last_block_done = (old == (gridDim.y-1));
    }

    __syncthreads();

    // check that all data is now available in global memory
    if (is_last_block_done) {
      sum_dy_th = accscalar_t(0.0);
      sum_dy_xmu_th = accscalar_t(0.0);

      for (int y = threadIdx.y; y < gridDim.y; y += blockDim.y) {
        address_base = c_offset + y * stride;
        sum_dy_th += (c_offset < stride ? staging_sum_dy[address_base] : accscalar_t(0.0));
        sum_dy_xmu_th += (c_offset < stride ? staging_sum_dy_xmu[address_base] : accscalar_t(0.0));
      }

      merge_block_vertical_backward(sum_dy_th, sum_dy_xmu_th, shmem_sum_dy, shmem_sum_dy_xmu);
      if (threadIdx.y == 0 && c_offset < stride) {
        if (grad_bias != nullptr) {
          grad_bias[c_offset] = static_cast<layerscalar_t>(sum_dy_th);
        }
        if (grad_weight != nullptr) {
          grad_weight[c_offset] = static_cast<layerscalar_t>(sum_dy_xmu_th * factor);
        }
        //mean_dy[c_offset] = sum_dy_th / reduction_size;
        //mean_dy_xmu[c_offset] = sum_dy_xmu_th / reduction_size;
        sum_dy_o[c_offset] = sum_dy_th;
        sum_dy_xmu_o[c_offset] = sum_dy_xmu_th;
      }
    }
  } else {
    if (blockIdx.y == 0 && threadIdx.y == 0 && c_offset < stride) {
      if (grad_bias != nullptr) {
        grad_bias[c_offset] = static_cast<layerscalar_t>(sum_dy_th);
      }
      if (grad_weight != nullptr) {
        grad_weight[c_offset] = static_cast<layerscalar_t>(sum_dy_xmu_th * factor);
      }
      //mean_dy[c_offset] = sum_dy_th / reduction_size;
      //mean_dy_xmu[c_offset] = sum_dy_xmu_th / reduction_size;
      sum_dy_o[c_offset] = sum_dy_th;
      sum_dy_xmu_o[c_offset] = sum_dy_xmu_th;
    }
  }
}

// elementwise BN kernel
// original apex name: batchnorm_backward_c_last_kernel
template <
    int PARALLEL_LOADS,
    typename scalar_t,
    typename accscalar_t,
    typename layerscalar_t>
__device__ __forceinline__ void batch_norm_backward_elemt_channels_last_kernel_impl(
      const scalar_t* __restrict__ grad_output,
      const scalar_t* __restrict__ input,
      const accscalar_t* __restrict__ mean,
      const accscalar_t* __restrict__ inv_std,
      const layerscalar_t* __restrict__ weight,
      const accscalar_t* __restrict__ sum_dy,
      const accscalar_t* __restrict__ sum_dy_xmu,
      scalar_t* __restrict__ grad_input,
      const accscalar_t norm_fct,
      const int reduction_size,
      const int stride) {
  // tensor dimension (m,c)
  // loop along m dimension
  int inner_loop_stride = blockDim.y * gridDim.y;

  // offset along m dimension
  int m_offset = blockIdx.y * blockDim.y + threadIdx.y;
  int c_offset = blockIdx.x * blockDim.x + threadIdx.x;

  if (c_offset >= stride || m_offset >= reduction_size) {
    return;
  }

  auto m_c = mean[c_offset];
  auto m_dy_c = sum_dy[c_offset] * norm_fct;
  auto factor_1_c = inv_std[c_offset];
  auto factor_2_c = (weight == nullptr? accscalar_t(1.0) : static_cast<accscalar_t>(weight[c_offset])) * factor_1_c;
  factor_1_c = factor_1_c * factor_1_c * sum_dy_xmu[c_offset] * norm_fct;

  int loop_count = 1 + (reduction_size - 1) / (inner_loop_stride * PARALLEL_LOADS);
  int address_base = m_offset * stride + c_offset;
  int address_increment = inner_loop_stride * stride;

  for (int i = 0; i < loop_count; i++) {
#pragma unroll
    for (int j = 0; j < PARALLEL_LOADS; j++) {
      if (c_offset < stride && m_offset < reduction_size) {
        grad_input[address_base] = static_cast<scalar_t>(
            (static_cast<accscalar_t>(grad_output[address_base]) - m_dy_c -
            (static_cast<accscalar_t>(input[address_base]) - m_c) * factor_1_c)
            * factor_2_c);
      }
      m_offset += inner_loop_stride;
      address_base += address_increment;
    }
  }
}

template <
    int PARALLEL_LOADS,
    typename scalar_t,
    typename accscalar_t,
    typename layerscalar_t>
__global__ void batch_norm_backward_elemt_channels_last_kernel(
      const scalar_t* __restrict__ grad_output,
      const scalar_t* __restrict__ input,
      const accscalar_t* __restrict__ mean,
      const accscalar_t* __restrict__ inv_std,
      const layerscalar_t* __restrict__ weight,
      const accscalar_t* __restrict__ sum_dy,
      const accscalar_t* __restrict__ sum_dy_xmu,
      const int* __restrict__ numel,
      scalar_t* __restrict__ grad_input,
      const int64_t world_size,
      const int reduction_size,
      const int stride) {

  int64_t total_numel = 0;
  for (int i = 0; i < world_size; i++) {
    total_numel += numel[i];
  }

  auto norm_fct = static_cast<accscalar_t>(1) / static_cast<accscalar_t>(total_numel);
  batch_norm_backward_elemt_channels_last_kernel_impl<PARALLEL_LOADS>(
      grad_output, input, mean, inv_std, weight, sum_dy, sum_dy_xmu,
      grad_input, norm_fct, reduction_size, stride);
}

template <
    int PARALLEL_LOADS,
    typename scalar_t,
    typename accscalar_t,
    typename layerscalar_t>
__global__ void batch_norm_backward_elemt_channels_last_kernel(
      const scalar_t* __restrict__ grad_output,
      const scalar_t* __restrict__ input,
      const accscalar_t* __restrict__ mean,
      const accscalar_t* __restrict__ inv_std,
      const layerscalar_t* __restrict__ weight,
      const accscalar_t* __restrict__ sum_dy,
      const accscalar_t* __restrict__ sum_dy_xmu,
      scalar_t* __restrict__ grad_input,
      const accscalar_t norm_fct,
      const int reduction_size,
      const int stride) {
  batch_norm_backward_elemt_channels_last_kernel_impl<PARALLEL_LOADS>(
      grad_output, input, mean, inv_std, weight, sum_dy, sum_dy_xmu,
      grad_input, norm_fct, reduction_size, stride);
}

template<typename scalar_t, typename VarTransform>
void batch_norm_stats_channels_last_cuda_template(
    const Tensor& out_mean, const Tensor& out_invstd, const Tensor& input, double epsilon) {
  using accscalar_t = at::acc_type<scalar_t, true>;

  const auto stride = input.sizes()[1];
  const auto reduction_size = input.numel() / stride;

  resize_output(out_mean, {stride});
  resize_output(out_invstd, {stride});
  TORCH_INTERNAL_ASSERT(out_invstd.dim() == 1 && out_invstd.is_contiguous() &&
                        out_invstd.sizes()[0]);
  TORCH_INTERNAL_ASSERT(out_mean.dim() == 1 && out_mean.is_contiguous() &&
                        out_mean.sizes()[0]);

  dim3 block;
  dim3 grid;
  flexible_launch_configs(reduction_size, stride, block, grid, true);

  at::Tensor staging_data;
  at::Tensor semaphores;
  if (grid.y > 1) {
    staging_data = at::empty({4*stride*grid.y}, out_mean.options());
    semaphores = at::zeros({grid.x}, input.options().dtype(at::kInt));
  }

  accscalar_t* staging_data_ptr = grid.y > 1 ? staging_data.data_ptr<accscalar_t>() : nullptr;
  int* semaphores_ptr = grid.y > 1 ? semaphores.data_ptr<int>() : nullptr;
  batch_norm_collect_statistics_channels_last_kernel<VarTransform, scalar_t, accscalar_t, ELEMENTS_PER_ITER>
      <<<grid, block, 0, at::cuda::getCurrentCUDAStream()>>>(
      input.data_ptr<scalar_t>(),
      out_mean.data_ptr<accscalar_t>(),
      out_invstd.data_ptr<accscalar_t>(),
      staging_data_ptr,
      semaphores_ptr,
      reduction_size,
      stride,
      epsilon);
  C10_CUDA_KERNEL_LAUNCH_CHECK();
}

void batch_norm_elemt_channels_last_cuda_template(
    const at::Tensor& output,
    const at::Tensor& input,
    const at::Tensor& weight,
    const at::Tensor& shift,  // bias of BN
    const at::Tensor& mean,
    const at::Tensor& inv_std,
    const at::optional<at::Tensor>& z = c10::nullopt,  // bias after BN
    const bool fuse_relu = false) {
  const auto stride = input.sizes()[1];
  const auto reduction_size = input.numel() / stride;

  dim3 block;
  dim3 grid;
  flexible_launch_configs(reduction_size, stride, block, grid);

  auto stream = at::cuda::getCurrentCUDAStream();
  const auto second_dtype = weight.defined() ? weight.scalar_type() :
      (shift.defined() ? shift.scalar_type() : input.scalar_type());

  if (input.scalar_type() != second_dtype) {
    AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(), "batchnorm_forward", [&] {
      using accscalar_t = at::acc_type<scalar_t, true>;
      batch_norm_transform_input_channels_last_kernel<scalar_t, accscalar_t, accscalar_t, ELEMENTS_PER_ITER>
          <<<grid, block, 0, stream>>>(
          input.data_ptr<scalar_t>(),
          z.has_value() ? z.value().data_ptr<scalar_t>() : nullptr,
          mean.data_ptr<accscalar_t>(),
          inv_std.data_ptr<accscalar_t>(),
          weight.defined() ? weight.data_ptr<accscalar_t>() : nullptr,
          shift.defined() ? shift.data_ptr<accscalar_t>() : nullptr,
          output.data_ptr<scalar_t>(),
          reduction_size,
          stride,
          fuse_relu);
      C10_CUDA_KERNEL_LAUNCH_CHECK();
    });
  } else {
    if (weight.defined()){
      TORCH_CHECK(input.scalar_type() == weight.scalar_type(), "batchnorm_forward: input.scalar_type() ", input.scalar_type(),
        " is not supported with weight.scalar_type() ", weight.scalar_type());
    }
    AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(), "batchnorm_forward", [&] {
      using accscalar_t = at::acc_type<scalar_t, true>;
      batch_norm_transform_input_channels_last_kernel<scalar_t, accscalar_t, scalar_t, ELEMENTS_PER_ITER>
          <<<grid, block, 0, stream>>>(
          input.data_ptr<scalar_t>(),
          z.has_value() ? z.value().data_ptr<scalar_t>() : nullptr,
          mean.data_ptr<accscalar_t>(),
          inv_std.data_ptr<accscalar_t>(),
          weight.defined() ? weight.data_ptr<scalar_t>() : nullptr,
          shift.defined() ? shift.data_ptr<scalar_t>(): nullptr,
          output.data_ptr<scalar_t>(),
          reduction_size,
          stride,
          fuse_relu);
      C10_CUDA_KERNEL_LAUNCH_CHECK();
    });
  }
}

std::tuple<Tensor, Tensor, Tensor, Tensor>
batch_norm_backward_reduce_cuda_channels_last_template(const at::Tensor& grad_output,
    const at::Tensor& input,
    const at::Tensor& mean,
    const at::Tensor& inv_std,
    const at::Tensor& weight,
    const bool input_g, const bool weight_g, const bool bias_g) {
  const auto stride = input.sizes()[1];
  const auto reduction_size = input.numel() / stride;

  at::Tensor sumn_dy = at::empty({stride}, mean.options());
  at::Tensor sum_dy_xmu = at::empty({stride}, mean.options());

  at::Tensor grad_weight;
  at::Tensor grad_bias;
  if (weight.defined()) {
    grad_weight = at::empty({stride}, weight.options());
    grad_bias = at::empty({stride}, weight.options());
  } else {
    // because I cannot return an uninitialized at::Tensor
    grad_weight = at::empty({0}, mean.options());
    grad_bias = at::empty({0}, mean.options());
  }

  dim3 block;
  dim3 grid;
  flexible_launch_configs(reduction_size, stride, block, grid, true);

  at::Tensor staging_data;
  at::Tensor semaphores;
  if (grid.y > 1) {
    staging_data = at::empty({2*stride*grid.y}, mean.options());
    semaphores = at::zeros({grid.x}, input.options().dtype(at::kInt));
  }
  auto stream = at::cuda::getCurrentCUDAStream();

  if (weight.defined() && input.scalar_type() != weight.scalar_type()) {
    AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(), "batchnorm_backward_reduce", [&] {
      using accscalar_t = at::acc_type<scalar_t, true>;
      accscalar_t* staging_data_ptr = grid.y > 1 ? staging_data.data_ptr<accscalar_t>() : nullptr;
      int* semaphores_ptr = grid.y > 1 ? semaphores.data_ptr<int>() : nullptr;
      batch_norm_backward_reduce_channels_last_kernel<ELEMENTS_PER_ITER>
          <<<grid, block, 0, stream>>>(
          input.data_ptr<scalar_t>(),
          grad_output.data_ptr<scalar_t>(),
          mean.data_ptr<accscalar_t>(),
          inv_std.data_ptr<accscalar_t>(),
          sumn_dy.data_ptr<accscalar_t>(),
          sum_dy_xmu.data_ptr<accscalar_t>(),
          grad_weight.data_ptr<accscalar_t>(),
          grad_bias.data_ptr<accscalar_t>(),
          staging_data_ptr,
          semaphores_ptr,
          reduction_size,
          stride);
      C10_CUDA_KERNEL_LAUNCH_CHECK();
    });
  } else {
    if (weight.defined()) {
      TORCH_CHECK(input.scalar_type() == weight.scalar_type(), "batchnorm_backward_reduce: input.scalar_type() ", input.scalar_type(),
        " is not supported with weight.scalar_type() ", weight.scalar_type());
    }
    AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(), "batchnorm_backward_reduce", [&] {
      using accscalar_t = at::acc_type<scalar_t, true>;
      accscalar_t* staging_data_ptr = grid.y > 1 ? staging_data.data_ptr<accscalar_t>() : nullptr;
      int* semaphores_ptr = grid.y > 1 ? semaphores.data_ptr<int>() : nullptr;
      batch_norm_backward_reduce_channels_last_kernel<ELEMENTS_PER_ITER>
          <<<grid, block, 0, stream>>>(
          input.data_ptr<scalar_t>(),
          grad_output.data_ptr<scalar_t>(),
          mean.data_ptr<accscalar_t>(),
          inv_std.data_ptr<accscalar_t>(),
          sumn_dy.data_ptr<accscalar_t>(),
          sum_dy_xmu.data_ptr<accscalar_t>(),
          weight.defined() ? grad_weight.data_ptr<scalar_t>() : nullptr,
          weight.defined() ? grad_bias.data_ptr<scalar_t>() : nullptr,
          staging_data_ptr,
          semaphores_ptr,
          reduction_size,
          stride);
      C10_CUDA_KERNEL_LAUNCH_CHECK();
    });
  }

  return std::make_tuple(sumn_dy, sum_dy_xmu, grad_weight, grad_bias);
}

at::Tensor batch_norm_backward_elemt_channels_last_cuda_template(
    const at::Tensor& grad_output,
    const at::Tensor& input,
    const at::Tensor& mean,
    const at::Tensor& inv_std,
    const at::Tensor& weight,
    const at::Tensor& sum_dy,
    const at::Tensor& sum_dy_xmu,
    const at::Tensor& count) {
  const auto stride = input.sizes()[1];
  const auto reduction_size = input.numel() / stride;

  // Input is guarunteed to be channels-last compatible
  at::Tensor grad_input = at::empty_like(input);

  dim3 block;
  dim3 grid;
  flexible_launch_configs(reduction_size, stride, block, grid);

  auto stream = at::cuda::getCurrentCUDAStream();

  if (weight.defined() && weight.scalar_type() != input.scalar_type()) {
    AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(), "batchnorm_backward_element", [&] {
      using accscalar_t = at::acc_type<scalar_t, true>;
      batch_norm_backward_elemt_channels_last_kernel<ELEMENTS_PER_ITER>
          <<<grid, block, 0, stream>>>(
          grad_output.data_ptr<scalar_t>(),
          input.data_ptr<scalar_t>(),
          mean.data_ptr<accscalar_t>(),
          inv_std.data_ptr<accscalar_t>(),
          weight.data_ptr<accscalar_t>(),
          sum_dy.data_ptr<accscalar_t>(),
          sum_dy_xmu.data_ptr<accscalar_t>(),
          count.data_ptr<int>(),
          grad_input.data_ptr<scalar_t>(),
          count.numel(),
          reduction_size,
          stride);
      C10_CUDA_KERNEL_LAUNCH_CHECK();
    });
  } else {
    if (weight.defined()) {
      TORCH_CHECK(input.scalar_type() == weight.scalar_type(), "batchnorm_backward_element: input.scalar_type() ", input.scalar_type(),
        " is not supported with weight.scalar_type() ", weight.scalar_type());
    }
    AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, input.scalar_type(), "batchnorm_backward_element", [&] {
      using accscalar_t = at::acc_type<scalar_t, true>;
      batch_norm_backward_elemt_channels_last_kernel<ELEMENTS_PER_ITER>
          <<<grid, block, 0, stream>>>(
          grad_output.data_ptr<scalar_t>(),
          input.data_ptr<scalar_t>(),
          mean.data_ptr<accscalar_t>(),
          inv_std.data_ptr<accscalar_t>(),
          weight.defined() ? weight.data_ptr<scalar_t>() : nullptr,
          sum_dy.data_ptr<accscalar_t>(),
          sum_dy_xmu.data_ptr<accscalar_t>(),
          count.data_ptr<int>(),
          grad_input.data_ptr<scalar_t>(),
          count.numel(),
          reduction_size,
          stride);
      C10_CUDA_KERNEL_LAUNCH_CHECK();
    });
  }

  return grad_input;
}

at::Tensor batch_norm_backward_elemt_channels_last_cuda_template(
    const at::Tensor& grad_output,
    const at::Tensor& input,
    const at::Tensor& mean,
    const at::Tensor& inv_std,
    const at::Tensor& weight,
    const at::Tensor& sum_dy,
    const at::Tensor& sum_dy_xmu) {
  const auto stride = input.sizes()[1];
  const auto reduction_size = input.numel() / stride;
  auto norm_fct = 1.0 / reduction_size;

  // Input is guarunteed to be channels-last compatible
  at::Tensor grad_input = at::empty_like(input);

  dim3 block;
  dim3 grid;
  flexible_launch_configs(reduction_size, stride, block, grid);

  auto stream = at::cuda::getCurrentCUDAStream();

  AT_DISPATCH_FLOATING_TYPES_AND2(kHalf, kBFloat16, input.scalar_type(), "batchnorm_backward_element", [&] {
    using accscalar_t = at::acc_type<scalar_t, true>;

    if (weight.defined() && weight.scalar_type() != input.scalar_type()) {
      batch_norm_backward_elemt_channels_last_kernel<ELEMENTS_PER_ITER>
          <<<grid, block, 0, stream>>>(
          grad_output.data_ptr<scalar_t>(),
          input.data_ptr<scalar_t>(),
          mean.data_ptr<accscalar_t>(),
          inv_std.data_ptr<accscalar_t>(),
          weight.data_ptr<accscalar_t>(),
          sum_dy.data_ptr<accscalar_t>(),
          sum_dy_xmu.data_ptr<accscalar_t>(),
          grad_input.data_ptr<scalar_t>(),
          static_cast<accscalar_t>(norm_fct),
          reduction_size,
          stride);
          C10_CUDA_KERNEL_LAUNCH_CHECK();
    } else {
      batch_norm_backward_elemt_channels_last_kernel<ELEMENTS_PER_ITER>
          <<<grid, block, 0, stream>>>(
          grad_output.data_ptr<scalar_t>(),
          input.data_ptr<scalar_t>(),
          mean.data_ptr<accscalar_t>(),
          inv_std.data_ptr<accscalar_t>(),
          weight.defined() ? weight.data_ptr<scalar_t>() : nullptr,
          sum_dy.data_ptr<accscalar_t>(),
          sum_dy_xmu.data_ptr<accscalar_t>(),
          grad_input.data_ptr<scalar_t>(),
          static_cast<accscalar_t>(norm_fct),
          reduction_size,
          stride);
          C10_CUDA_KERNEL_LAUNCH_CHECK();
    }
  });

  return grad_input;
}

} } // namespace at::native