File size: 10,740 Bytes
9dd3461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#pragma once
#include <ATen/core/Tensor.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/native/cuda/Loops.cuh>
#include <ATen/native/cuda/MemoryAccess.cuh>

namespace at { namespace native {

namespace {

static constexpr int64_t kILP = 4;
static constexpr int64_t kChunkSize = 65536;
static constexpr int64_t kBlockSize = 512;

template<typename T>
__device__ __forceinline__ bool is_aligned(T* p){
  return ((uint64_t)p) % (kILP * sizeof(T)) == 0;
}

template<typename T>
__device__ __forceinline__ void load_store(T* dst, T* src, int dst_offset, int src_offset){
  using LT = at::native::memory::aligned_vector<T, kILP>;
  ((LT*)dst)[dst_offset] = ((LT*)src)[src_offset];
}

// TODO(crcrpar): Add `n>5` for `low prec params & their higher prec copy`
// TensorListMetadata has to be < 4KB - the limit for kernel launch argument
static constexpr int depth_to_max_tensors[5] = {110, 64, 48, 36, 30};
static constexpr int depth_to_max_blocks[5] = {320, 320, 320, 320, 320};
static constexpr int depth_to_max_tensors_scalarlist[5] = {96, 64, 48, 36, 30};

template<int n> struct TensorListMetadata
{
  void* addresses[n][depth_to_max_tensors[n-1]];
  int numel_for_tensor[depth_to_max_tensors[n-1]];
  unsigned char block_to_tensor[depth_to_max_blocks[n-1]];
  int block_to_chunk[depth_to_max_blocks[n-1]];
  int start_tensor_this_launch;
};

// NOTE(crcrpar): This is a conservative resolution to handle `state_steps`
// whose each element is `at::Tensor` of 1 element representing the number of `step`s called so far.
template<int n> struct FusedOptimizerTensorListMetadata
{
  void* addresses[n][depth_to_max_tensors[n-1]];
  int numel_for_tensor[depth_to_max_tensors[n-1]];
  void* state_steps_addresses[depth_to_max_tensors_scalarlist[n-1]];
  unsigned char block_to_tensor[depth_to_max_blocks[n-1]];
  int block_to_chunk[depth_to_max_blocks[n-1]];
  int start_tensor_this_launch;
};

template<typename scalar_vals_t, int n> struct TensorListScalarListMetadata
{
  void* addresses[n][depth_to_max_tensors_scalarlist[n-1]];
  int numel_for_tensor[depth_to_max_tensors_scalarlist[n-1]];
  scalar_vals_t scalar_vals[depth_to_max_tensors_scalarlist[n-1]];
  unsigned char block_to_tensor[depth_to_max_blocks[n-1]];
  int block_to_chunk[depth_to_max_blocks[n-1]];
};

// note(mkozuki): `n` of 96 and `scalar_vals_t` of `c10::complex<double>`
// violates the cuda kernel argument size limitation of 4kb.
// 80 is a number that does not violate this limitation.
template<> struct TensorListScalarListMetadata<c10::complex<double>, 1>
{
  void* addresses[1][80];
  int numel_for_tensor[80];
  c10::complex<double> scalar_vals[80];
  unsigned char block_to_tensor[depth_to_max_blocks[1-1]];
  int block_to_chunk[depth_to_max_blocks[1-1]];
};

template<typename T, typename U, typename... ArgTypes>
C10_LAUNCH_BOUNDS_1(kBlockSize)
__global__ void
multi_tensor_apply_kernel(
    T tensorListMeta,
    U callable,
    ArgTypes... args) {
  // Hand the chunk information to the user-supplied functor to process however it likes.
  callable(kChunkSize, tensorListMeta, args...);
}

template<int depth, typename scalar_T, typename T, typename... ArgTypes>
void multi_tensor_apply(
    std::vector<std::vector<at::Tensor>>& tensor_lists,
    at::ArrayRef<Scalar> scalars,
    T callable,
    ArgTypes... args) {
        TORCH_CHECK(tensor_lists.size() == depth, "Number of tensor lists has to match the depth.");
        size_t n_tensors = tensor_lists[0].size();
        using scalar_vals_t = typename T::opmath_t;
        TensorListScalarListMetadata<scalar_vals_t, depth> tensorListMeta;

        int loc_block_info = 0;
        int loc_tensor_info = 0;
        for(size_t t = 0; t < n_tensors; t++) {

            tensorListMeta.scalar_vals[loc_tensor_info] = scalars[t].to<scalar_T>();

            tensorListMeta.numel_for_tensor[loc_tensor_info] = tensor_lists[0][t].numel();
            for (int d = 0; d < depth; d++) {
                tensorListMeta.addresses[d][loc_tensor_info] = tensor_lists[d][t].data_ptr();
            }
            loc_tensor_info++;

            int chunks = (tensor_lists[0][t].numel() + kChunkSize - 1)/kChunkSize;
            for (int chunk = 0; chunk < chunks; chunk++) {
                tensorListMeta.block_to_tensor[loc_block_info] = loc_tensor_info - 1;
                tensorListMeta.block_to_chunk[loc_block_info] = chunk;
                loc_block_info++;

                bool tensors_full = (loc_tensor_info == depth_to_max_tensors_scalarlist[depth-1] &&
                    chunk == chunks - 1);
                bool blocks_full = (loc_block_info == depth_to_max_blocks[depth-1]);
                bool last_chunk = (t == n_tensors - 1 && chunk == chunks - 1);

                if (tensors_full || blocks_full || last_chunk) {
                    multi_tensor_apply_kernel<<<loc_block_info, kBlockSize, 0, at::cuda::getCurrentCUDAStream()>>>(
                        tensorListMeta,
                        callable,
                        args...);
                    C10_CUDA_KERNEL_LAUNCH_CHECK();

                    // Reset.
                    loc_block_info = 0;
                    if(chunk == chunks - 1) {
                        loc_tensor_info = 0;
                    }
                    else {
                        tensorListMeta.numel_for_tensor[0] = tensorListMeta.numel_for_tensor[loc_tensor_info-1];
                        tensorListMeta.scalar_vals[0] = tensorListMeta.scalar_vals[loc_tensor_info-1];
                        for(int d = 0; d < depth; d++) {
                            tensorListMeta.addresses[d][0] = tensorListMeta.addresses[d][loc_tensor_info-1];
                        }
                        loc_tensor_info = 1;
                    }
                }
            }
        }
    }


template<int depth, typename T, typename... ArgTypes>
void multi_tensor_apply(
    std::vector<std::vector<at::Tensor>>& tensor_lists,
    T callable,
    ArgTypes... args) {
        TORCH_CHECK(tensor_lists.size() == depth, "Number of tensor lists has to match the depth.");
        size_t n_tensors = tensor_lists[0].size();
        TensorListMetadata<depth> tensorListMeta;
        tensorListMeta.start_tensor_this_launch = 0;

        int loc_block_info = 0;
        int loc_tensor_info = 0;
        for(size_t t = 0; t < n_tensors; t++) {
            tensorListMeta.numel_for_tensor[loc_tensor_info] = tensor_lists[0][t].numel();
            for (int d = 0; d < depth; d++) {
                tensorListMeta.addresses[d][loc_tensor_info] = tensor_lists[d][t].data_ptr();
            }
            loc_tensor_info++;

            int chunks = (tensor_lists[0][t].numel() + kChunkSize - 1)/kChunkSize;
            for (int chunk = 0; chunk < chunks; chunk++) {
                tensorListMeta.block_to_tensor[loc_block_info] = loc_tensor_info - 1;
                tensorListMeta.block_to_chunk[loc_block_info] = chunk;
                loc_block_info++;

                bool tensors_full = (loc_tensor_info == depth_to_max_tensors[depth-1] &&
                    chunk == chunks - 1);
                bool blocks_full = (loc_block_info == depth_to_max_blocks[depth-1]);
                bool last_chunk = (t == n_tensors - 1 && chunk == chunks - 1);

                if (tensors_full || blocks_full || last_chunk) {
                    multi_tensor_apply_kernel<<<loc_block_info, kBlockSize, 0, at::cuda::getCurrentCUDAStream()>>>(
                        tensorListMeta,
                        callable,
                        args...);
                    C10_CUDA_KERNEL_LAUNCH_CHECK();

                    // Reset.
                    loc_block_info = 0;
                    if(chunk == chunks - 1) {
                        loc_tensor_info = 0;
                        tensorListMeta.start_tensor_this_launch = t + 1;
                    }
                    else {
                        tensorListMeta.numel_for_tensor[0] = tensorListMeta.numel_for_tensor[loc_tensor_info-1];
                        for(int d = 0; d < depth; d++) {
                            tensorListMeta.addresses[d][0] = tensorListMeta.addresses[d][loc_tensor_info-1];
                        }
                        loc_tensor_info = 1;
                        tensorListMeta.start_tensor_this_launch = t;
                    }
                }
            }
        }
}

template<int depth, typename T, typename... ArgTypes>
void multi_tensor_apply_for_fused_optimizer(
    std::vector<std::vector<at::Tensor>>& tensor_lists,
    at::TensorList state_steps,
    T callable,
    ArgTypes... args) {
  TORCH_CHECK(tensor_lists.size() == depth, "Number of tensor lists has to match the depth");
  const auto num_tensors = tensor_lists[0].size();
  FusedOptimizerTensorListMetadata<depth> tensorListMeta;

  int loc_block_info = 0;
  int loc_tensor_info = 0;
  for (const auto & tensor_index : c10::irange(num_tensors)) {
    tensorListMeta.state_steps_addresses[loc_tensor_info] = state_steps[tensor_index].data_ptr();
    tensorListMeta.numel_for_tensor[loc_tensor_info] = tensor_lists[0][tensor_index].numel();
    for (const auto & d : c10::irange(depth)) {
      tensorListMeta.addresses[d][loc_tensor_info] = tensor_lists[d][tensor_index].data_ptr();
    }
    loc_tensor_info++;

    const auto chunks = (tensor_lists[0][tensor_index].numel() + kChunkSize - 1) / kChunkSize;
    for (const auto & chunk : c10::irange(chunks)) {
      tensorListMeta.block_to_tensor[loc_block_info] = loc_tensor_info - 1;
      tensorListMeta.block_to_chunk[loc_block_info] = chunk;
      loc_block_info++;

      const auto tensor_full = (loc_tensor_info == depth_to_max_tensors[depth - 1] && chunk == chunks - 1);
      const auto blocks_full = loc_block_info == depth_to_max_blocks[depth - 1];
      const auto last_chunk = (tensor_index == num_tensors - 1 && chunk == chunks - 1);

      if (tensor_full || blocks_full || last_chunk) {
        multi_tensor_apply_kernel<<<loc_block_info, kBlockSize, 0, at::cuda::getCurrentCUDAStream()>>>(
            tensorListMeta,
            callable,
            args...);
        C10_CUDA_KERNEL_LAUNCH_CHECK();

        // Reset.
        loc_block_info = 0;
        if (chunk == chunks - 1) {
          loc_tensor_info = 0;
        } else {
          tensorListMeta.numel_for_tensor[0] = tensorListMeta.numel_for_tensor[loc_tensor_info - 1];
          tensorListMeta.state_steps_addresses[0] = tensorListMeta.state_steps_addresses[loc_tensor_info - 1];
          for (const auto & d : c10::irange(depth)) {
            tensorListMeta.addresses[d][0] = tensorListMeta.addresses[d][loc_tensor_info - 1];
          }
          loc_tensor_info = 1;
        }
      }
    }
  }
}

} // namespace
}} // at::native