File size: 10,740 Bytes
9dd3461 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
#pragma once
#include <ATen/core/Tensor.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/native/cuda/Loops.cuh>
#include <ATen/native/cuda/MemoryAccess.cuh>
namespace at { namespace native {
namespace {
static constexpr int64_t kILP = 4;
static constexpr int64_t kChunkSize = 65536;
static constexpr int64_t kBlockSize = 512;
template<typename T>
__device__ __forceinline__ bool is_aligned(T* p){
return ((uint64_t)p) % (kILP * sizeof(T)) == 0;
}
template<typename T>
__device__ __forceinline__ void load_store(T* dst, T* src, int dst_offset, int src_offset){
using LT = at::native::memory::aligned_vector<T, kILP>;
((LT*)dst)[dst_offset] = ((LT*)src)[src_offset];
}
// TODO(crcrpar): Add `n>5` for `low prec params & their higher prec copy`
// TensorListMetadata has to be < 4KB - the limit for kernel launch argument
static constexpr int depth_to_max_tensors[5] = {110, 64, 48, 36, 30};
static constexpr int depth_to_max_blocks[5] = {320, 320, 320, 320, 320};
static constexpr int depth_to_max_tensors_scalarlist[5] = {96, 64, 48, 36, 30};
template<int n> struct TensorListMetadata
{
void* addresses[n][depth_to_max_tensors[n-1]];
int numel_for_tensor[depth_to_max_tensors[n-1]];
unsigned char block_to_tensor[depth_to_max_blocks[n-1]];
int block_to_chunk[depth_to_max_blocks[n-1]];
int start_tensor_this_launch;
};
// NOTE(crcrpar): This is a conservative resolution to handle `state_steps`
// whose each element is `at::Tensor` of 1 element representing the number of `step`s called so far.
template<int n> struct FusedOptimizerTensorListMetadata
{
void* addresses[n][depth_to_max_tensors[n-1]];
int numel_for_tensor[depth_to_max_tensors[n-1]];
void* state_steps_addresses[depth_to_max_tensors_scalarlist[n-1]];
unsigned char block_to_tensor[depth_to_max_blocks[n-1]];
int block_to_chunk[depth_to_max_blocks[n-1]];
int start_tensor_this_launch;
};
template<typename scalar_vals_t, int n> struct TensorListScalarListMetadata
{
void* addresses[n][depth_to_max_tensors_scalarlist[n-1]];
int numel_for_tensor[depth_to_max_tensors_scalarlist[n-1]];
scalar_vals_t scalar_vals[depth_to_max_tensors_scalarlist[n-1]];
unsigned char block_to_tensor[depth_to_max_blocks[n-1]];
int block_to_chunk[depth_to_max_blocks[n-1]];
};
// note(mkozuki): `n` of 96 and `scalar_vals_t` of `c10::complex<double>`
// violates the cuda kernel argument size limitation of 4kb.
// 80 is a number that does not violate this limitation.
template<> struct TensorListScalarListMetadata<c10::complex<double>, 1>
{
void* addresses[1][80];
int numel_for_tensor[80];
c10::complex<double> scalar_vals[80];
unsigned char block_to_tensor[depth_to_max_blocks[1-1]];
int block_to_chunk[depth_to_max_blocks[1-1]];
};
template<typename T, typename U, typename... ArgTypes>
C10_LAUNCH_BOUNDS_1(kBlockSize)
__global__ void
multi_tensor_apply_kernel(
T tensorListMeta,
U callable,
ArgTypes... args) {
// Hand the chunk information to the user-supplied functor to process however it likes.
callable(kChunkSize, tensorListMeta, args...);
}
template<int depth, typename scalar_T, typename T, typename... ArgTypes>
void multi_tensor_apply(
std::vector<std::vector<at::Tensor>>& tensor_lists,
at::ArrayRef<Scalar> scalars,
T callable,
ArgTypes... args) {
TORCH_CHECK(tensor_lists.size() == depth, "Number of tensor lists has to match the depth.");
size_t n_tensors = tensor_lists[0].size();
using scalar_vals_t = typename T::opmath_t;
TensorListScalarListMetadata<scalar_vals_t, depth> tensorListMeta;
int loc_block_info = 0;
int loc_tensor_info = 0;
for(size_t t = 0; t < n_tensors; t++) {
tensorListMeta.scalar_vals[loc_tensor_info] = scalars[t].to<scalar_T>();
tensorListMeta.numel_for_tensor[loc_tensor_info] = tensor_lists[0][t].numel();
for (int d = 0; d < depth; d++) {
tensorListMeta.addresses[d][loc_tensor_info] = tensor_lists[d][t].data_ptr();
}
loc_tensor_info++;
int chunks = (tensor_lists[0][t].numel() + kChunkSize - 1)/kChunkSize;
for (int chunk = 0; chunk < chunks; chunk++) {
tensorListMeta.block_to_tensor[loc_block_info] = loc_tensor_info - 1;
tensorListMeta.block_to_chunk[loc_block_info] = chunk;
loc_block_info++;
bool tensors_full = (loc_tensor_info == depth_to_max_tensors_scalarlist[depth-1] &&
chunk == chunks - 1);
bool blocks_full = (loc_block_info == depth_to_max_blocks[depth-1]);
bool last_chunk = (t == n_tensors - 1 && chunk == chunks - 1);
if (tensors_full || blocks_full || last_chunk) {
multi_tensor_apply_kernel<<<loc_block_info, kBlockSize, 0, at::cuda::getCurrentCUDAStream()>>>(
tensorListMeta,
callable,
args...);
C10_CUDA_KERNEL_LAUNCH_CHECK();
// Reset.
loc_block_info = 0;
if(chunk == chunks - 1) {
loc_tensor_info = 0;
}
else {
tensorListMeta.numel_for_tensor[0] = tensorListMeta.numel_for_tensor[loc_tensor_info-1];
tensorListMeta.scalar_vals[0] = tensorListMeta.scalar_vals[loc_tensor_info-1];
for(int d = 0; d < depth; d++) {
tensorListMeta.addresses[d][0] = tensorListMeta.addresses[d][loc_tensor_info-1];
}
loc_tensor_info = 1;
}
}
}
}
}
template<int depth, typename T, typename... ArgTypes>
void multi_tensor_apply(
std::vector<std::vector<at::Tensor>>& tensor_lists,
T callable,
ArgTypes... args) {
TORCH_CHECK(tensor_lists.size() == depth, "Number of tensor lists has to match the depth.");
size_t n_tensors = tensor_lists[0].size();
TensorListMetadata<depth> tensorListMeta;
tensorListMeta.start_tensor_this_launch = 0;
int loc_block_info = 0;
int loc_tensor_info = 0;
for(size_t t = 0; t < n_tensors; t++) {
tensorListMeta.numel_for_tensor[loc_tensor_info] = tensor_lists[0][t].numel();
for (int d = 0; d < depth; d++) {
tensorListMeta.addresses[d][loc_tensor_info] = tensor_lists[d][t].data_ptr();
}
loc_tensor_info++;
int chunks = (tensor_lists[0][t].numel() + kChunkSize - 1)/kChunkSize;
for (int chunk = 0; chunk < chunks; chunk++) {
tensorListMeta.block_to_tensor[loc_block_info] = loc_tensor_info - 1;
tensorListMeta.block_to_chunk[loc_block_info] = chunk;
loc_block_info++;
bool tensors_full = (loc_tensor_info == depth_to_max_tensors[depth-1] &&
chunk == chunks - 1);
bool blocks_full = (loc_block_info == depth_to_max_blocks[depth-1]);
bool last_chunk = (t == n_tensors - 1 && chunk == chunks - 1);
if (tensors_full || blocks_full || last_chunk) {
multi_tensor_apply_kernel<<<loc_block_info, kBlockSize, 0, at::cuda::getCurrentCUDAStream()>>>(
tensorListMeta,
callable,
args...);
C10_CUDA_KERNEL_LAUNCH_CHECK();
// Reset.
loc_block_info = 0;
if(chunk == chunks - 1) {
loc_tensor_info = 0;
tensorListMeta.start_tensor_this_launch = t + 1;
}
else {
tensorListMeta.numel_for_tensor[0] = tensorListMeta.numel_for_tensor[loc_tensor_info-1];
for(int d = 0; d < depth; d++) {
tensorListMeta.addresses[d][0] = tensorListMeta.addresses[d][loc_tensor_info-1];
}
loc_tensor_info = 1;
tensorListMeta.start_tensor_this_launch = t;
}
}
}
}
}
template<int depth, typename T, typename... ArgTypes>
void multi_tensor_apply_for_fused_optimizer(
std::vector<std::vector<at::Tensor>>& tensor_lists,
at::TensorList state_steps,
T callable,
ArgTypes... args) {
TORCH_CHECK(tensor_lists.size() == depth, "Number of tensor lists has to match the depth");
const auto num_tensors = tensor_lists[0].size();
FusedOptimizerTensorListMetadata<depth> tensorListMeta;
int loc_block_info = 0;
int loc_tensor_info = 0;
for (const auto & tensor_index : c10::irange(num_tensors)) {
tensorListMeta.state_steps_addresses[loc_tensor_info] = state_steps[tensor_index].data_ptr();
tensorListMeta.numel_for_tensor[loc_tensor_info] = tensor_lists[0][tensor_index].numel();
for (const auto & d : c10::irange(depth)) {
tensorListMeta.addresses[d][loc_tensor_info] = tensor_lists[d][tensor_index].data_ptr();
}
loc_tensor_info++;
const auto chunks = (tensor_lists[0][tensor_index].numel() + kChunkSize - 1) / kChunkSize;
for (const auto & chunk : c10::irange(chunks)) {
tensorListMeta.block_to_tensor[loc_block_info] = loc_tensor_info - 1;
tensorListMeta.block_to_chunk[loc_block_info] = chunk;
loc_block_info++;
const auto tensor_full = (loc_tensor_info == depth_to_max_tensors[depth - 1] && chunk == chunks - 1);
const auto blocks_full = loc_block_info == depth_to_max_blocks[depth - 1];
const auto last_chunk = (tensor_index == num_tensors - 1 && chunk == chunks - 1);
if (tensor_full || blocks_full || last_chunk) {
multi_tensor_apply_kernel<<<loc_block_info, kBlockSize, 0, at::cuda::getCurrentCUDAStream()>>>(
tensorListMeta,
callable,
args...);
C10_CUDA_KERNEL_LAUNCH_CHECK();
// Reset.
loc_block_info = 0;
if (chunk == chunks - 1) {
loc_tensor_info = 0;
} else {
tensorListMeta.numel_for_tensor[0] = tensorListMeta.numel_for_tensor[loc_tensor_info - 1];
tensorListMeta.state_steps_addresses[0] = tensorListMeta.state_steps_addresses[loc_tensor_info - 1];
for (const auto & d : c10::irange(depth)) {
tensorListMeta.addresses[d][0] = tensorListMeta.addresses[d][loc_tensor_info - 1];
}
loc_tensor_info = 1;
}
}
}
}
}
} // namespace
}} // at::native
|