File size: 9,782 Bytes
9dd3461 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
#pragma once
// This file provides two functions to help write GPU elementwise kernels:
//
// gpu_kernel(TensorIterator iter, <lambda>)
// gpu_kernel_with_scalars(TensorIterator iter, <lambda>)
//
// The gpu_kernel_with_scalars generates specializations that support a
// single scalar CPU argument, such as from `cuda_tensor + 5`. The CPU scalar
// is lifted to a kernel parameter instead of copying to device memory.
// This should be used in conjunction with TensorIterator::allow_cpu_scalars_,
// which is the default for TensorIterator::binary_op. Otherwise, all inputs
// and the output must be on the GPU.
//
// For example, to write a reciprocal kernel for GPU float Tensors:
//
// gpu_kernel(iter, []GPU_LAMBDA(float a) {
// return 1.0f / a;
// });
//
// To write a multiplication kernel for GPU float Tensors where one argument
// may be a CPU scalar:
//
// gpu_kernel_with_scalars(iter, []GPU_LAMBDA(float a, float b) {
// return a * b;
// });
//
// See BinaryOpsKernel.cu for the complete implementation
//
#include <type_traits>
#include <tuple>
#include <iostream>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/core/Array.h>
#include <ATen/detail/FunctionTraits.h>
#include <ATen/native/TensorIterator.h>
#include <c10/macros/Macros.h>
#include <c10/core/DynamicCast.h>
#include <c10/core/ScalarType.h>
#include <c10/util/TypeCast.h>
#include <c10/util/C++17.h>
#ifdef __NVCC__
#define ASSERT_HOST_DEVICE_LAMBDA(type) \
static_assert(__nv_is_extended_host_device_lambda_closure_type(type), \
#type " must be a __host__ __device__ lambda")
#else
#define ASSERT_HOST_DEVICE_LAMBDA(type)
#endif
namespace at { namespace native {
template<int vec_size, typename func_t, typename array_t>
C10_LAUNCH_BOUNDS_1(num_threads())
__global__ void vectorized_elementwise_kernel(int N, func_t f, array_t data) {
using traits = function_traits<func_t>;
int remaining = N - block_work_size() * blockIdx.x;
if (remaining < block_work_size()) { // if this block handles the reminder, just do a naive unrolled loop
auto input_calc = TrivialOffsetCalculator<traits::arity>();
auto output_calc = TrivialOffsetCalculator<1>();
auto loader = memory::LoadWithoutCast();
auto storer = memory::StoreWithoutCast();
auto policy = memory::policies::unroll<array_t, decltype(input_calc), decltype(output_calc),
memory::LoadWithoutCast, memory::StoreWithoutCast>(
data, remaining, input_calc, output_calc, loader, storer);
elementwise_kernel_helper(f, policy);
} else { // if this block has a full `block_work_size` data to handle, use vectorized memory access
elementwise_kernel_helper(f, memory::policies::vectorized<vec_size, array_t>(data));
}
}
template<typename func_t, typename array_t, typename inp_calc_t, typename out_calc_t, typename loader_t, typename storer_t>
C10_LAUNCH_BOUNDS_1(num_threads())
__global__ void unrolled_elementwise_kernel(int N, func_t f, array_t data,
inp_calc_t ic, out_calc_t oc, loader_t l, storer_t s)
{
int remaining = N - block_work_size() * blockIdx.x;
auto policy = memory::policies::unroll<array_t, inp_calc_t, out_calc_t, loader_t, storer_t>(data, remaining, ic, oc, l, s);
elementwise_kernel_helper(f, policy);
}
// this function assume trivial 1d and no dynamic casting
template<typename func_t, typename array_t>
static inline void launch_vectorized_kernel(int64_t N, const func_t& f, array_t data) {
TORCH_INTERNAL_ASSERT(N > 0 && N <= std::numeric_limits<int32_t>::max());
using traits = function_traits<func_t>;
int64_t grid = (N + block_work_size() - 1) / block_work_size();
auto stream = at::cuda::getCurrentCUDAStream();
int vec_size = memory::can_vectorize_up_to<func_t>(data);
switch (vec_size) {
case 4:
vectorized_elementwise_kernel<4, func_t, array_t><<<grid, num_threads(), 0, stream>>>(N, f, data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
break;
case 2:
vectorized_elementwise_kernel<2, func_t, array_t><<<grid, num_threads(), 0, stream>>>(N, f, data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
break;
case 1: {
auto input_calc = TrivialOffsetCalculator<traits::arity>();
auto output_calc = TrivialOffsetCalculator<1>();
auto loader = memory::LoadWithoutCast();
auto storer = memory::StoreWithoutCast();
unrolled_elementwise_kernel<func_t, array_t><<<grid, num_threads(), 0, stream>>>(N, f, data, input_calc, output_calc, loader, storer);
C10_CUDA_KERNEL_LAUNCH_CHECK();
break;
}
default:
TORCH_INTERNAL_ASSERT(false, "Unexpected vectorization size");
}
}
template<typename func_t, typename array_t, typename inp_calc_t, typename out_calc_t, typename loader_t, typename storer_t>
static inline void launch_unrolled_kernel(int64_t N, const func_t& f, array_t data,
inp_calc_t ic, out_calc_t oc, loader_t l, storer_t s)
{
TORCH_INTERNAL_ASSERT(N > 0 && N <= std::numeric_limits<int32_t>::max());
int64_t grid = (N + block_work_size() - 1) / block_work_size();
auto stream = at::cuda::getCurrentCUDAStream();
unrolled_elementwise_kernel<func_t, array_t><<<grid, num_threads(), 0, stream>>>(N, f, data, ic, oc, l, s);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
template<int nt, int vt, typename func_t>
C10_LAUNCH_BOUNDS_2(nt, 4)
__global__ void elementwise_kernel(int N, func_t f) {
int tid = threadIdx.x;
int nv = nt * vt;
int idx = nv * blockIdx.x + tid;
#pragma unroll
for (int i = 0; i < vt; i++) {
if (idx < N) {
f(idx);
idx += nt;
}
}
}
template<int nt, int vt, typename func_t>
static void launch_legacy_kernel(int64_t N, const func_t& f) {
TORCH_INTERNAL_ASSERT(N >= 0 && N <= std::numeric_limits<int32_t>::max());
if (N == 0) {
return;
}
dim3 block(nt);
dim3 grid((N + block.x * vt - 1) / (block.x * vt));
auto stream = at::cuda::getCurrentCUDAStream();
elementwise_kernel<nt, vt, func_t><<<grid, block, 0, stream>>>(N, f);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
template <typename traits, typename func_t, typename index_t, size_t... INDEX>
C10_HOST_DEVICE typename traits::result_type
invoke_impl(const func_t &f, char *const C10_RESTRICT data[], const index_t strides[], int i,
std::index_sequence<INDEX...>) {
(void)strides;
(void)i;
return f(c10::load<typename traits::template arg<INDEX>::type>(data[INDEX] + i * strides[INDEX])...);
}
template <typename func_t, typename index_t, typename traits = function_traits<func_t>>
C10_HOST_DEVICE typename traits::result_type
invoke(const func_t &f, char *const C10_RESTRICT data[], const index_t strides[], int i) {
using Indices = std::make_index_sequence<traits::arity>;
return invoke_impl<traits>(f, data, strides, i, Indices{});
}
template <typename traits, typename func_t, typename index_t, size_t... I>
C10_HOST_DEVICE typename traits::result_type
invoke_impl(const func_t &f, char *const C10_RESTRICT data[], const index_t strides[], const ScalarType dtypes[], int i,
std::index_sequence<I...>) {
(void)strides;
(void)i;
return f(c10::fetch_and_cast<typename traits::template arg<I>::type>(dtypes[I], data[I] + i * strides[I])...);
}
template <typename func_t, typename index_t, typename traits = function_traits<func_t>>
C10_HOST_DEVICE typename traits::result_type
invoke(const func_t &f, char *const C10_RESTRICT data[], const index_t strides[], const ScalarType dtypes[], int i) {
using Indices = std::make_index_sequence<traits::arity>;
return invoke_impl<traits>(f, data, strides, dtypes, i, Indices{});
}
template <typename func_t>
void gpu_kernel_impl(TensorIteratorBase& iter, const func_t& f) {
using traits = function_traits<func_t>;
using arg0_t = typename traits::result_type;
constexpr int ntensors = traits::arity + 1;
TORCH_INTERNAL_ASSERT(iter.can_use_32bit_indexing());
TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity);
TORCH_INTERNAL_ASSERT(iter.noutputs() == 1);
at::detail::Array<char*, ntensors> data;
for (int i = 0; i < ntensors; i++) {
data[i] = (char*)iter.data_ptr(i);
}
int64_t numel = iter.numel();
bool contiguous = iter.is_contiguous();
bool dynamic_casting = needs_dynamic_casting<func_t>::check(iter);
if (!dynamic_casting) {
if (contiguous) {
launch_vectorized_kernel(numel, f, data);
} else {
auto offset_calc = ::make_offset_calculator<traits::arity + 1>(iter);
constexpr int unroll_factor = sizeof(arg0_t) >= 4 ? 2 : 4;
launch_legacy_kernel<128,unroll_factor>(numel, [=]GPU_LAMBDA(int idx) {
auto offsets = offset_calc.get(idx);
arg0_t* out = (arg0_t*)(data[0] + offsets[0]);
*out = invoke(f, &data.data[1], &offsets.data[1], 1);
});
}
} else {
if (contiguous) {
auto loader = memory::LoadWithCast<traits::arity>(iter);
auto storer = memory::StoreWithCast<1>(iter);
auto input_offset_calculator = TrivialOffsetCalculator<traits::arity>();
auto output_offset_calculator = TrivialOffsetCalculator<1>();
launch_unrolled_kernel(numel, f, data, input_offset_calculator, output_offset_calculator, loader, storer);
} else {
at::detail::Array<ScalarType, ntensors> dtypes;
for (int i = 0; i < ntensors; i++) {
dtypes[i] = iter.dtype(i);
}
auto offset_calc = ::make_offset_calculator<traits::arity + 1>(iter);
launch_legacy_kernel<128, 4>(numel, [=]GPU_LAMBDA(int idx) {
auto offsets = offset_calc.get(idx);
void* out = data[0] + offsets[0];
arg0_t result = invoke(f, &data.data[1], &offsets.data[1], &dtypes.data[1], 1);
c10::cast_and_store<arg0_t>(dtypes[0], out, result);
});
}
}
}
}} // namespace at::native
|