File size: 6,668 Bytes
9dd3461 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
#pragma once
// Complex number math operations that act as no-ops for other dtypes.
#include <c10/util/complex.h>
#include <c10/util/math_compat.h>
#include <c10/util/MathConstants.h>
#include<ATen/NumericUtils.h>
namespace at { namespace native {
inline namespace CPU_CAPABILITY {
template <typename SCALAR_TYPE, typename VALUE_TYPE=SCALAR_TYPE>
inline VALUE_TYPE zabs (SCALAR_TYPE z) {
return z;
}
template<>
inline c10::complex<float> zabs <c10::complex<float>> (c10::complex<float> z) {
return c10::complex<float>(std::abs(z));
}
template<>
inline float zabs <c10::complex<float>, float> (c10::complex<float> z) {
return std::abs(z);
}
template<>
inline c10::complex<double> zabs <c10::complex<double>> (c10::complex<double> z) {
return c10::complex<double>(std::abs(z));
}
template<>
inline double zabs <c10::complex<double>, double> (c10::complex<double> z) {
return std::abs(z);
}
// This overload corresponds to non-complex dtypes.
// The function is consistent with its NumPy equivalent
// for non-complex dtypes where `pi` is returned for
// negative real numbers and `0` is returned for 0 or positive
// real numbers.
// Note: `nan` is propagated.
template <typename SCALAR_TYPE, typename VALUE_TYPE=SCALAR_TYPE>
inline VALUE_TYPE angle_impl (SCALAR_TYPE z) {
if (at::_isnan(z)) {
return z;
}
return z < 0 ? c10::pi<double> : 0;
}
template<>
inline c10::complex<float> angle_impl <c10::complex<float>> (c10::complex<float> z) {
return c10::complex<float>(std::arg(z), 0.0);
}
template<>
inline float angle_impl <c10::complex<float>, float> (c10::complex<float> z) {
return std::arg(z);
}
template<>
inline c10::complex<double> angle_impl <c10::complex<double>> (c10::complex<double> z) {
return c10::complex<double>(std::arg(z), 0.0);
}
template<>
inline double angle_impl <c10::complex<double>, double> (c10::complex<double> z) {
return std::arg(z);
}
template <typename SCALAR_TYPE, typename VALUE_TYPE=SCALAR_TYPE>
constexpr VALUE_TYPE real_impl (SCALAR_TYPE z) {
return z; //No-Op
}
template<>
constexpr c10::complex<float> real_impl <c10::complex<float>> (c10::complex<float> z) {
return c10::complex<float>(z.real(), 0.0);
}
template<>
constexpr float real_impl <c10::complex<float>, float> (c10::complex<float> z) {
return z.real();
}
template<>
constexpr c10::complex<double> real_impl <c10::complex<double>> (c10::complex<double> z) {
return c10::complex<double>(z.real(), 0.0);
}
template<>
constexpr double real_impl <c10::complex<double>, double> (c10::complex<double> z) {
return z.real();
}
template <typename SCALAR_TYPE, typename VALUE_TYPE=SCALAR_TYPE>
constexpr VALUE_TYPE imag_impl (SCALAR_TYPE /*z*/) {
return 0;
}
template<>
constexpr c10::complex<float> imag_impl <c10::complex<float>> (c10::complex<float> z) {
return c10::complex<float>(z.imag(), 0.0);
}
template<>
constexpr float imag_impl <c10::complex<float>, float> (c10::complex<float> z) {
return z.imag();
}
template<>
constexpr c10::complex<double> imag_impl <c10::complex<double>> (c10::complex<double> z) {
return c10::complex<double>(z.imag(), 0.0);
}
template<>
constexpr double imag_impl <c10::complex<double>, double> (c10::complex<double> z) {
return z.imag();
}
template <typename TYPE>
inline TYPE conj_impl (TYPE z) {
return z; //No-Op
}
template<>
inline c10::complex<at::Half> conj_impl <c10::complex<at::Half>> (c10::complex<at::Half> z) {
return c10::complex<at::Half>{z.real(), -z.imag()};
}
template<>
inline c10::complex<float> conj_impl <c10::complex<float>> (c10::complex<float> z) {
return c10::complex<float>(z.real(), -z.imag());
}
template<>
inline c10::complex<double> conj_impl <c10::complex<double>> (c10::complex<double> z) {
return c10::complex<double>(z.real(), -z.imag());
}
template <typename TYPE>
inline TYPE ceil_impl (TYPE z) {
return std::ceil(z);
}
template <>
inline c10::complex<float> ceil_impl (c10::complex<float> z) {
return c10::complex<float>(std::ceil(z.real()), std::ceil(z.imag()));
}
template <>
inline c10::complex<double> ceil_impl (c10::complex<double> z) {
return c10::complex<double>(std::ceil(z.real()), std::ceil(z.imag()));
}
template<typename T>
inline c10::complex<T> sgn_impl (c10::complex<T> z) {
if (z == c10::complex<T>(0, 0)) {
return c10::complex<T>(0, 0);
} else {
return z / zabs(z);
}
}
template <typename TYPE>
inline TYPE floor_impl (TYPE z) {
return std::floor(z);
}
template <>
inline c10::complex<float> floor_impl (c10::complex<float> z) {
return c10::complex<float>(std::floor(z.real()), std::floor(z.imag()));
}
template <>
inline c10::complex<double> floor_impl (c10::complex<double> z) {
return c10::complex<double>(std::floor(z.real()), std::floor(z.imag()));
}
template <typename TYPE>
inline TYPE round_impl (TYPE z) {
return std::nearbyint(z);
}
template <>
inline c10::complex<float> round_impl (c10::complex<float> z) {
return c10::complex<float>(std::nearbyint(z.real()), std::nearbyint(z.imag()));
}
template <>
inline c10::complex<double> round_impl (c10::complex<double> z) {
return c10::complex<double>(std::nearbyint(z.real()), std::nearbyint(z.imag()));
}
template <typename TYPE>
inline TYPE trunc_impl (TYPE z) {
return std::trunc(z);
}
template <>
inline c10::complex<float> trunc_impl (c10::complex<float> z) {
return c10::complex<float>(std::trunc(z.real()), std::trunc(z.imag()));
}
template <>
inline c10::complex<double> trunc_impl (c10::complex<double> z) {
return c10::complex<double>(std::trunc(z.real()), std::trunc(z.imag()));
}
template <typename TYPE, std::enable_if_t<!c10::is_complex<TYPE>::value, int> = 0>
inline TYPE max_impl (TYPE a, TYPE b) {
if (_isnan<TYPE>(a) || _isnan<TYPE>(b)) {
return std::numeric_limits<TYPE>::quiet_NaN();
} else {
return std::max(a, b);
}
}
template <typename TYPE, std::enable_if_t<c10::is_complex<TYPE>::value, int> = 0>
inline TYPE max_impl (TYPE a, TYPE b) {
if (_isnan<TYPE>(a)) {
return a;
} else if (_isnan<TYPE>(b)) {
return b;
} else {
return std::abs(a) > std::abs(b) ? a : b;
}
}
template <typename TYPE, std::enable_if_t<!c10::is_complex<TYPE>::value, int> = 0>
inline TYPE min_impl (TYPE a, TYPE b) {
if (_isnan<TYPE>(a) || _isnan<TYPE>(b)) {
return std::numeric_limits<TYPE>::quiet_NaN();
} else {
return std::min(a, b);
}
}
template <typename TYPE, std::enable_if_t<c10::is_complex<TYPE>::value, int> = 0>
inline TYPE min_impl (TYPE a, TYPE b) {
if (_isnan<TYPE>(a)) {
return a;
} else if (_isnan<TYPE>(b)) {
return b;
} else {
return std::abs(a) < std::abs(b) ? a : b;
}
}
} // end namespace
}} //end at::native
|