File size: 12,184 Bytes
9dd3461 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
#pragma once
#include <ATen/native/cpu/Loops.h>
#include <ATen/Parallel.h>
#include <c10/util/TypeList.h>
#include <c10/core/Scalar.h>
#include <c10/util/irange.h>
#include <sstream>
namespace at { namespace native { inline namespace CPU_CAPABILITY {
using namespace vec;
#define VEC_LOOP_HEADER(func_t, data) \
using scalar_t = typename function_traits<func_t>::result_type; \
using Vec = Vectorized<scalar_t>; \
char* out_ptr = data[0]; \
(void) out_ptr;
// reduction that is contiguous over the input in dim 0
template <typename traits>
static inline bool is_contiguous_reduction(const int64_t* strides) {
return strides[0] == 0 &&
strides[1] == sizeof(typename traits::arg2_t);
}
// reduction that is contiguous over the input in dim 1
template <typename traits>
static inline bool is_outer_reduction(const int64_t* strides) {
return strides[0] == 0 &&
strides[2] == sizeof(typename traits::result_type) &&
strides[3] == sizeof(typename traits::arg2_t);
}
template <typename func_t, typename vec_func_t>
static inline void vectorized_reduction(char** data, int64_t n, int64_t stride,
func_t op, vec_func_t vop, bool reduce) {
VEC_LOOP_HEADER(func_t, data)
const char* in1_ptr = data[1];
Vec acc[4];
for (const auto j : c10::irange(4)) {
acc[j] = Vec::loadu(in1_ptr + j * Vec::size() * sizeof(scalar_t));
}
for (const auto i : c10::irange(1, n)) {
const char* ptr = in1_ptr + stride * i;
acc[0] = vop(acc[0], Vec::loadu(ptr + (0 * Vec::size() * sizeof(scalar_t))));
acc[1] = vop(acc[1], Vec::loadu(ptr + (1 * Vec::size() * sizeof(scalar_t))));
acc[2] = vop(acc[2], Vec::loadu(ptr + (2 * Vec::size() * sizeof(scalar_t))));
acc[3] = vop(acc[3], Vec::loadu(ptr + (3 * Vec::size() * sizeof(scalar_t))));
}
if (reduce) {
scalar_t buffer[Vec::size()];
acc[0] = vop(vop(acc[0], acc[1]), vop(acc[2], acc[3]));
acc[0].store(buffer);
for (const auto j : c10::irange(1, Vec::size())) {
buffer[0] = op(buffer[0], buffer[j]);
}
auto dst = (scalar_t*)out_ptr;
*dst = op(*dst, buffer[0]);
} else {
for (const auto j : c10::irange(4)) {
auto dst = out_ptr + j * Vec::size() * sizeof(scalar_t);
acc[j] = vop(acc[j], Vec::loadu(dst));
acc[j].store(dst);
}
}
}
template <typename F>
static inline void UNARY_OUTER_LOOP(char* data[2], const int64_t strides[2], int64_t n, F f) {
for (const auto j C10_UNUSED : c10::irange(n)) {
f();
data[0] += strides[0];
data[1] += strides[1];
}
}
// computes the reduction out = op(out, in)
template <typename func_t, typename vec_func_t>
static inline void vectorized_inner_reduction(char** data, int64_t n, func_t op, vec_func_t vop) {
VEC_LOOP_HEADER(func_t, data)
int64_t vector_stride = 4 * Vec::size() * sizeof(scalar_t);
int64_t count = n / (4 * Vec::size());
if (count > 0) {
vectorized_reduction(data, count, vector_stride, op, vop, /*reduce=*/true);
}
char* ptrs[3] = { data[0], data[0], data[1] };
int64_t strides[] = { 0, 0, sizeof(scalar_t) };
basic_loop(ptrs, strides, count * 4 * Vec::size(), n, op);
}
// computes the reduction out = op(out, in)
template <typename func_t, typename vec_func_t>
static inline void vectorized_outer_reduction(char** data, int64_t inner_stride, int64_t size0, int64_t size1, func_t op, vec_func_t vop) {
VEC_LOOP_HEADER(func_t, data)
// reduce down each column of 4 * Vec::size() elements (128 or 256 bytes)
#if defined(CPU_CAPABILITY_AVX512)
int64_t outer_stride[2] = { 256, 256 };
#else
int64_t outer_stride[2] = { 128, 128 };
#endif
UNARY_OUTER_LOOP(data, outer_stride, size1 / (4 * Vec::size()), [&] {
vectorized_reduction(data, size0, inner_stride, op, vop, /*reduce=*/false);
});
// reduce down the remaining columns
int64_t step[] = { sizeof(scalar_t), sizeof(scalar_t) };
int64_t remaining = size1 % (4 * Vec::size());
UNARY_OUTER_LOOP(data, step, remaining, [&] {
char* ptrs[3] = { data[0], data[0], data[1] };
int64_t strides[] = { 0, 0, inner_stride };
basic_loop(ptrs, strides, 0, size0, op);
});
}
template<typename traits, typename res_t>
static void set_result(const int index, const res_t result, const TensorIteratorBase &iter, const int num_outputs) {
// static_assert(std::is_same<res_t, typename traits::arg2_t>::value, "data types must match");
if (index < num_outputs) {
char *out = (char *) iter.data_ptr(index);
*(res_t *) out = result;
}
}
template<typename traits, typename res_t>
static void set_results(const res_t result, const TensorIteratorBase &iter, const int num_outputs) {
AT_ASSERT(num_outputs == 1);
set_result<traits>(0, result, iter, num_outputs);
}
template<typename traits, std::size_t i = 0, typename... tuple_t>
static inline typename std::enable_if<i == sizeof...(tuple_t), std::size_t>::type
for_each_in_tuple(const std::tuple<tuple_t...>& /*t*/, const TensorIteratorBase& /*iter*/, const int /*num_outputs*/) {
return i;
}
template<typename traits, std::size_t i = 0, typename... tuple_t>
static inline typename std::enable_if<i < sizeof...(tuple_t), std::size_t>::type
for_each_in_tuple(const std::tuple<tuple_t...>& t, const TensorIteratorBase &iter, const int num_outputs) {
if (i < (size_t)num_outputs) {
set_result<traits>(i, std::get<i>(t), iter, num_outputs);
return for_each_in_tuple<traits, i + 1, tuple_t...>(t, iter, num_outputs);
}
return i;
}
template<typename traits, typename... res_t>
static void set_results(const std::tuple<res_t...>& result, const TensorIteratorBase &iter, const int num_outputs) {
AT_ASSERT(num_outputs >= 1);
std::size_t result_size = for_each_in_tuple<traits>(result, iter, num_outputs);
AT_ASSERT((size_t)num_outputs == result_size);
}
template <typename T, typename... Args>
struct all_same : guts::conjunction<
std::is_same<T, Args>...
> {};
// data_t is the input/output data type.
// acc_t is a type that contains all the necessary data
// to continue reducing.
// index_t is a one-dimensional index
//
// ops_t is such that &ops_t::reduce, &ops_t::combine, and &ops_t::project exist and satisfy
// the following.
// reduce: (acc_t, data_t, index_t) -> acc_t adds one data point to the accumulated value.
// combine: (acc_t, acc_t) -> acc_t combines two accumulated values into one.
// project: acc_t -> out_t finishes the reduction, getting the required output.
//
// Additionally, acc_t must be default-constructible:
// acc_t {} is an identity for combine,
// and project(acc_t {}) is the value of the operation on zero elements.
//
// The point of `combine` is to support parallelization -
// the idea is to one sequence of `reduce` calls per thread of execution,
// and then to combine them at the end with `combine`.
//
// If there is more than one output element,
// our parallelization strategy is to use one thread for each of them,
// which means that `combine` will never be called.
//
// If, on the other hand, there is only one, then we split the input into
// into several pieces, reduce each separately, and then combine them.
template <typename ops_t, typename init_t>
void binary_kernel_reduce(TensorIteratorBase& iter, ops_t ops, init_t init) {
using rf_t = decltype(&ops_t::reduce);
using cf_t = decltype(&ops_t::combine);
using pf_t = decltype(&ops_t::project);
using r_traits = binary_function_traits<rf_t>;
using c_traits = binary_function_traits<cf_t>;
using p_traits = unary_function_traits<pf_t>;
using acc_t = typename p_traits::arg1_t;
using data_t = typename r_traits::arg2_t;
static_assert(
all_same<
acc_t,
init_t,
typename r_traits::arg1_t,
typename r_traits::result_type,
typename c_traits::arg1_t,
typename c_traits::arg2_t,
typename c_traits::result_type>::value,
"all accumulate types must match");
static_assert(
std::is_default_constructible<acc_t>::value,
"the accumulate type must be default-constructible"
);
const int num_outputs = iter.noutputs();
iter.foreach_reduced_elt([&ops, &init, num_outputs](TensorIteratorBase &sub_iter) {
auto reduction_body = [&ops, &sub_iter, num_outputs](acc_t acc, int64_t begin, int64_t end) -> acc_t {
int ntensors = sub_iter.ntensors();
sub_iter.serial_for_each([&acc, &ops, num_outputs, ntensors, begin](char** data, const int64_t* strides, int64_t size) {
AT_ASSERT(ntensors - num_outputs == 1);
char *in = data[ntensors - 1];
int64_t stride = strides[ntensors - 1];
for (const auto i : c10::irange(size)) {
acc = ops.reduce(acc, c10::load<data_t>(in), begin + i);
in += stride;
}
}, {begin, end});
return ops.translate_idx(acc, sub_iter.view_offsets()[0]);
};
acc_t total_acc = init;
auto numel = sub_iter.numel();
if (numel < at::internal::GRAIN_SIZE || at::get_num_threads() == 1 ||
at::in_parallel_region()) {
total_acc = reduction_body(total_acc, 0, numel);
} else {
int max_threads = at::get_num_threads();
AT_ASSERT(max_threads > 0);
static_assert(
!std::is_same<acc_t, bool>::value,
"Concurrently modifying different references into std::vector<bool> is UB."
);
std::vector<acc_t> buffer((unsigned)max_threads, init);
at::parallel_for(0, numel, internal::GRAIN_SIZE,
[&](int64_t begin, int64_t end) {
auto& acc = buffer[at::get_thread_num()];
acc = reduction_body(acc, begin, end);
}
);
for (const auto i : c10::irange(max_threads)) {
total_acc = ops.combine(total_acc, buffer[i]);
}
}
set_results<r_traits>(ops.project(total_acc), sub_iter, num_outputs);
});
}
template <typename func_t, typename vec_func_t>
void binary_kernel_reduce_vec(TensorIteratorBase& iter, func_t op, vec_func_t vop, double ident = 0) {
using traits = binary_function_traits<func_t>;
static_assert(
all_same<
typename traits::result_type,
typename traits::arg1_t,
typename traits::arg2_t>::value,
"all types must match");
iter.output_base().fill_(ident);
iter.parallel_reduce([&](char** data, const int64_t* strides, int64_t size0, int64_t size1) {
int64_t outer_strides[] = { strides[2], strides[3] };
if (is_contiguous_reduction<traits>(strides)) {
// input is contiguous in dim 0, output is reduced in dim 0
UNARY_OUTER_LOOP(data, outer_strides, size1, [&] {
vectorized_inner_reduction(data, size0, op, vop);
});
} else if (is_outer_reduction<traits>(strides)) {
// input and output are contiguous in dim 1
int64_t inner_stride = strides[1]; // stride of input in dim 0
vectorized_outer_reduction(data, inner_stride, size0, size1, op, vop);
} else {
UNARY_OUTER_LOOP(data, outer_strides, size1, [&] {
char* ptrs[3] = { data[0], data[0], data[1] };
int64_t inner_strides[3] = { strides[0], strides[0], strides[1] };
basic_loop(ptrs, inner_strides, 0, size0, op);
});
}
});
}
// when reduction is on most inner dimension (dim 0 in TensorIterator)
// and input has contiguous most inner dimension, `binary_kernel_reduce_lastdim`
// can be used.
static inline bool is_reduce_lastdim(TensorIteratorBase& iter) {
return iter.num_reduce_dims() == 1 && iter.is_dim_reduced(0)
&& iter.ninputs() == 1 && iter.strides(1)[0] == iter.element_size(1);
}
template <typename reduce_func_t>
void binary_kernel_reduce_lastdim(TensorIteratorBase& iter, reduce_func_t reduce_op) {
auto shape = iter.shape();
int64_t dim_size = shape[0];
int64_t grain_size = std::max((int64_t) 1, at::internal::GRAIN_SIZE / dim_size);
TensorIterator sub_iter(iter);
// create sub iterator to parallel on all non-reduce-dims
sub_iter.narrow(0, 0, 1);
auto loop = [&](char** data, const int64_t* strides, int64_t size) {
char* out = data[0];
char* in = data[1];
for (int64_t i = 0; i < size; ++i) {
reduce_op(out, in, dim_size);
out += strides[0];
in += strides[1];
}
};
sub_iter.for_each(loop, grain_size);
}
}}} // namespace at::native::<anonymous>
|