File size: 14,922 Bytes
9dd3461 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
#pragma once
// This file provides two functions to help write elementwise kernels:
//
// cpu_kernel(TensorIterator iter, <lambda>)
// cpu_kernel_vec(TensorIterator iter, <lambda>, <vec_lambda>)
//
// Both functions may generate vectorized code. The cpu_kernel implementation
// relies on the compiler's auto-vectorization. The cpu_kernel_vec
// implementation uses x86 SIMD intrinsics when available. These functions
// are only intended to be used in the ATen/native/cpu subdirectory, since files
// in other directories are not compiled with AVX/AVX2 enabled. See README.md
// for more details.
//
// For example, to write a multiplication kernel for float:
//
// cpu_kernel(iter, [](float a, float b) { return a * b; });
//
// Or you may write:
//
// cpu_kernel_vec(iter,
// [](float a, float b) { return a * b; },
// [](Vectorized<float> a, Vectorized<float> b) { return a * b; });
//
// See BinaryOpsKernel.cpp for the complete implementation
//
//
#include <stdint.h>
#include <c10/util/C++17.h>
#include <c10/util/Load.h>
#include <c10/util/irange.h>
#include <ATen/detail/FunctionTraits.h>
#include <ATen/native/cpu/IsContiguous.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/TensorIteratorDynamicCasting.h>
#include <ATen/cpu/vec/vec.h>
namespace at { namespace native { inline namespace CPU_CAPABILITY {
using namespace vec;
template <typename traits, std::size_t... INDEX>
typename traits::ArgsTuple
dereference_impl(char* C10_RESTRICT data[], const int64_t* strides, int64_t i,
std::index_sequence<INDEX...>) {
return std::make_tuple(
c10::load<typename traits::template arg<INDEX>::type>(
data[INDEX] + i * strides[INDEX])...);
}
template <typename traits>
typename traits::ArgsTuple
dereference(char* C10_RESTRICT data[], const int64_t* strides, int64_t i) {
using Indices = std::make_index_sequence<traits::arity>;
return dereference_impl<traits>(data, strides, i, Indices{});
}
template <typename traits, std::size_t... INDEX>
typename traits::ArgsTuple
dereference_vec_impl(char* C10_RESTRICT data[],
const typename traits::result_type& opt_scalar,
size_t S,
int64_t i,
std::index_sequence<INDEX...>) {
using Vec = typename traits::result_type;
using scalar_t = typename Vec::value_type;
return std::make_tuple(
S == INDEX + 1 ?
opt_scalar :
Vec::loadu(data[INDEX] + i * sizeof(scalar_t))...);
}
template <typename traits>
typename traits::ArgsTuple
dereference_vec(char* C10_RESTRICT data[], const typename traits::result_type& opt_scalar, size_t S, int64_t i) {
using Indices = std::make_index_sequence<traits::arity>;
return dereference_vec_impl<traits>(data, opt_scalar, S, i, Indices{});
}
template <typename func_t,
typename std::enable_if<!std::is_void<typename function_traits<func_t>::result_type>::value>::type* = nullptr>
static inline void
execute_op(char* C10_RESTRICT data[], const int64_t* strides, int64_t i, int64_t n, func_t&& op) {
using traits = function_traits<func_t>;
using result_type = typename traits::result_type;
for (; i < n; i++) {
result_type* out_ptr = (result_type*)(data[0] + i * strides[0]);
*out_ptr = c10::guts::apply(std::forward<func_t>(op), dereference<traits>(
&data[1],
&strides[1],
i));
}
}
template <typename func_t,
typename std::enable_if<std::is_void<typename function_traits<func_t>::result_type>::value>::type* = nullptr>
static inline void
execute_op(char* C10_RESTRICT data[], const int64_t* strides, int64_t i, int64_t n, func_t&& op) {
using traits = function_traits<func_t>;
for (; i < n; i++) {
c10::guts::apply(std::forward<func_t>(op), dereference<traits>(
&data[0],
&strides[0],
i));
}
}
// Basic loop operation (one output, N inputs). May be auto-vectorized
// by the compiler. Supports inputs and outputs of different types.
template <typename func_t>
static inline void
basic_loop(char* C10_RESTRICT data[], const int64_t* strides_, int64_t i, int64_t n, func_t&& op) {
using traits = function_traits<func_t>;
constexpr int ntensors = traits::arity + 1;
// Copying strides to temporary array helps auto vectorization in older GCC
// versions.
int64_t strides[ntensors];
for (const auto arg : c10::irange(ntensors)) {
strides[arg] = strides_[arg];
}
execute_op(data, strides, i, n, std::forward<func_t>(op));
}
// the recursive variadic template for iterating over the returned tuple
template<class T, size_t N>
struct TupleOutput {
static void handle(char *C10_RESTRICT data[], const int64_t *strides, int64_t i,
const T &tuple) {
TupleOutput<T, N - 1>::handle(data, strides, i, tuple);
auto output = std::get<N - 1>(tuple);
using output_type = decltype(output);
output_type * out_ptr = (output_type *)(data[N - 1] + i * strides[N - 1]);
*out_ptr = output;
}
};
// Base case for the above recursive template
template<class T>
struct TupleOutput<T, 1> {
static void handle(char *C10_RESTRICT data[], const int64_t *strides, int64_t i,
const T &tuple) {
auto output = std::get<0>(tuple);
using output_type = decltype(output);
output_type* out_ptr = (output_type *)(data[0] + i * strides[0]);
*out_ptr = output;
}
};
template<class... Args>
void handle_tuple_outputs(char* C10_RESTRICT data[],
const int64_t* strides,
int64_t i,
const std::tuple<Args...> &tuple) {
TupleOutput<decltype(tuple), sizeof...(Args)>::handle(data, strides, i, tuple);
}
// Loop operation for `cpu_kernel_multiple_outputs`.
// 1. Use `c10::guts::apply` to make dynamic method invocation
// for the lambda passed in `cpu_kernel_multiple_outputs`.
// 2. Iterate over the members of the returned tuple, set the corresponding
// output tensor by the tuple member in `handle_tuple_outputs` function.
template <typename func_t>
static inline void
multiple_outputs_loop(char* C10_RESTRICT data[], const int64_t* strides_, int64_t i, int64_t n, func_t&& op) {
using traits = function_traits<func_t>;
using result_type = typename traits::result_type;
constexpr int num_outputs = std::tuple_size<result_type>::value;
constexpr int ntensors = traits::arity + num_outputs;
// Copying strides to temporary array helps auto vectorization in older GCC
// versions.
int64_t strides[ntensors];
for (const auto arg : c10::irange(ntensors)) {
strides[arg] = strides_[arg];
}
for (; i < n; i++) {
auto output = c10::guts::apply(op, dereference<traits>(
&data[num_outputs],
&strides[num_outputs],
i));
handle_tuple_outputs(data, strides, i, output);
}
}
// Explicitly vectorized loop implementation. All inputs and outputs must be
// the same type and contiguous with one exception: a single input may be
// a scalar (stride 0). It's position is indicated by the argument `S`. If `S`
// is 0, then there are no scalar inputs.
template <typename func_t, typename vec_func_t>
static inline void
vectorized_loop(char** C10_RESTRICT data_, int64_t n, int64_t S, func_t&& op, vec_func_t&& vop) {
using traits = function_traits<vec_func_t>;
using scalar_t = typename function_traits<func_t>::result_type;
using Vec = Vectorized<scalar_t>;
constexpr int ntensors = traits::arity + 1;
char* C10_RESTRICT data[ntensors];
for (const auto arg : c10::irange(ntensors)) {
data[arg] = data_[arg];
}
Vec opt_scalar = Vec(S > 0 ? *(scalar_t*)data[S] : scalar_t(0));
int64_t i = 0;
for (; i <= n - 2 * Vec::size(); i += 2 * Vec::size()) {
auto args1 = dereference_vec<traits>(&data[1], opt_scalar, S, i);
auto args2 = dereference_vec<traits>(&data[1], opt_scalar, S, i + Vec::size());
auto out1 = c10::guts::apply(std::forward<vec_func_t>(vop), std::move(args1));
auto out2 = c10::guts::apply(std::forward<vec_func_t>(vop), std::move(args2));
out1.store(data[0] + i * sizeof(scalar_t));
out2.store(data[0] + (i + Vec::size()) * sizeof(scalar_t));
}
if (i < n) {
int64_t strides[ntensors];
for (const auto arg : c10::irange(ntensors)) {
strides[arg] = (S > 0 && arg == S) ? 0 : sizeof(scalar_t);
}
basic_loop(data, strides, i, n, std::forward<func_t>(op));
}
}
template <typename traits, typename cb_t>
static inline void unroll_contiguous_scalar_checks(
const int64_t* /*strides*/,
std::index_sequence<>,
cb_t&& cb) {
cb(0);
}
template <typename traits, typename cb_t, size_t INDEX0, size_t ...INDEX>
static inline void unroll_contiguous_scalar_checks(
const int64_t* strides,
std::index_sequence<INDEX0, INDEX...>,
cb_t&& cb) {
if (is_contiguous_scalar<traits, INDEX0 + 1>(strides)) {
cb(INDEX0 + 1);
} else {
unroll_contiguous_scalar_checks<traits>(strides, std::index_sequence<INDEX...>{}, std::forward<cb_t>(cb));
}
}
template <typename op_t, typename vop_t>
struct VectorizedLoop2d {
op_t op;
vop_t vop;
using traits = function_traits<op_t>;
static constexpr int ntensors = traits::arity + 1;
using data_t = std::array<char*, ntensors>;
VectorizedLoop2d(const op_t &op, const vop_t &vop):
op(op), vop(vop) {}
static void advance(data_t &data, const int64_t *outer_strides) {
for (const auto arg : c10::irange(data.size())) {
data[arg] += outer_strides[arg];
}
}
void operator()(char** base, const int64_t *strides, int64_t size0, int64_t size1) {
data_t data;
std::copy_n(base, ntensors, data.data());
const int64_t *outer_strides = &strides[ntensors];
if (is_contiguous<traits>(strides)) {
for (const auto i C10_UNUSED : c10::irange(size1)) {
vectorized_loop(data.data(), size0, 0, op, vop);
advance(data, outer_strides);
}
} else {
using Indices = std::make_index_sequence<traits::arity>;
unroll_contiguous_scalar_checks<traits>(strides, Indices{}, [&](size_t idx) {
if (idx) {
for (const auto i C10_UNUSED : c10::irange(size1)) {
vectorized_loop(data.data(), size0, idx, op, vop);
advance(data, outer_strides);
}
} else {
for (const auto i C10_UNUSED : c10::irange(size1)) {
basic_loop(data.data(), strides, 0, size0, op);
advance(data, outer_strides);
}
}
});
}
}
};
template <typename op_t, typename vop_t>
VectorizedLoop2d<op_t, vop_t> make_vectorized_loop2d(
const op_t &op, const vop_t &vop) {
return VectorizedLoop2d<op_t, vop_t>(op, vop);
}
template <typename func_t>
void cpu_kernel(TensorIteratorBase& iter, func_t&& op, int64_t grain_size = at::internal::GRAIN_SIZE) {
using traits = function_traits<func_t>;
// this could be extended to work with void return types
TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity);
TORCH_INTERNAL_ASSERT(iter.noutputs() == 1);
// dynamic casting not currently supported on CPU
TORCH_INTERNAL_ASSERT(!needs_dynamic_casting<func_t>::check(iter));
iter.for_each([&](char** data, const int64_t* strides, int64_t n) {
// basic loop can handle 1d slices with arbitrary strides, and 1d slices is all that
// iter.for_each is ever sending to the loop lambda
basic_loop(data, strides, 0, n, std::forward<func_t>(op));
}, grain_size);
iter.cast_outputs();
}
// This function helps write elementwise kernels that requires multiple outputs.
// It follows the similar structure of cpu_kernel.
// Instead of `basic_loop` function, a new `multiple_outputs_loop` function is
// manipulated to handle multiple return values.
// For now `needs_dynamic_casting` check is not added as the passed lambda (`func_t`)
// of `multiple_outputs_loop` returns `std::tuple` instead of `scalar_t`.
// The `gpu_kernel_multiple_outputs` is also implemented without this check,
// We could extend `needs_dynamic_casting` to support both `std::tuple` and
// `thrust::tuple` in the future.
template <typename func_t>
void cpu_kernel_multiple_outputs(TensorIteratorBase& iter, func_t&& op, int64_t grain_size = at::internal::GRAIN_SIZE) {
using traits = function_traits<func_t>;
TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity);
iter.for_each([&](char** data, const int64_t* strides, int64_t n) {
multiple_outputs_loop(data, strides, 0, n, std::forward<func_t>(op));
}, grain_size);
iter.cast_outputs();
}
template <bool check_dynamic_cast=true, typename func_t, typename vec_func_t>
void cpu_kernel_vec(TensorIteratorBase& iter, func_t&& op, vec_func_t&& vop, int64_t grain_size = at::internal::GRAIN_SIZE) {
using traits = function_traits<func_t>;
// this could be extended to work with void return types
TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity);
TORCH_INTERNAL_ASSERT(iter.noutputs() == 1);
// dynamic casting not currently supported on CPU, but some kernels (like Fill)
// explicitly dynamic_cast, so we give the opt-out of checking.
c10::guts::if_constexpr<check_dynamic_cast>([&] {
TORCH_INTERNAL_ASSERT(!needs_dynamic_casting<func_t>::check(iter));
});
iter.for_each(make_vectorized_loop2d(op, vop), grain_size);
iter.cast_outputs();
}
template <typename func_t>
void cpu_serial_kernel(TensorIteratorBase& iter, func_t&& op, const Range& range) {
using traits = function_traits<func_t>;
constexpr bool result_void = std::is_void<typename traits::result_type>::value;
TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity &&
((result_void && iter.noutputs() == 0) || (!result_void && iter.noutputs() == 1)));
// dynamic casting not currently supported on CPU
TORCH_INTERNAL_ASSERT(!needs_dynamic_casting<func_t>::check(iter));
iter.serial_for_each([&](char** data, const int64_t* strides, int64_t n) {
basic_loop(data, strides, 0, n, std::forward<func_t>(op));
}, range);
iter.cast_outputs();
}
template <typename func_t>
void cpu_serial_kernel(TensorIteratorBase& iter, func_t&& op) {
cpu_serial_kernel(iter, op, {0, iter.numel()});
}
template <typename func_t, typename vec_func_t>
void cpu_serial_kernel_vec(TensorIteratorBase& iter, func_t&& op, vec_func_t&& vop, const Range& range) {
using traits = function_traits<func_t>;
// this could be extended to work with void return types
TORCH_INTERNAL_ASSERT(iter.ninputs() == traits::arity);
TORCH_INTERNAL_ASSERT(iter.noutputs() == 1);
// dynamic casting not currently supported on CPU
TORCH_INTERNAL_ASSERT(!needs_dynamic_casting<func_t>::check(iter));
iter.serial_for_each(make_vectorized_loop2d(op, vop), range);
iter.cast_outputs();
}
template <typename func_t, typename vec_func_t>
void cpu_serial_kernel_vec(TensorIteratorBase& iter, func_t&& op, vec_func_t&& vop) {
cpu_serial_kernel_vec(iter, op, vop, {0, iter.numel()});
}
}}} // namespace at::native::<anonymous>
|