File size: 8,744 Bytes
9dd3461 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
#pragma once
#include <ATen/Config.h>
#include <ATen/Parallel.h>
#include <ATen/cpu/vec/functional.h>
#include <ATen/cpu/vec/vec.h>
#include <c10/util/complex.h>
// This header implements various unary operations using a MKL VML style
// interface.
// It implements various functions with a simple interface
// For example it enables the user to call vsin(float* out, const float* in,
// size) This functions takes a pointer to a contious output array of floats and
// a constant input array. It will then apply sin to each value in the input
// array and write the result into the output array. out and in may point to the
// same memory, i.e. this fully supports in-place operations. These functions
// also implement their own parallelization, so take precautions when calling
// these from threaded functions.
// When MKL is available it will call into MKL's VML library similar to NumPy
// If MKL is not available it will use SLEEF.
// This file might be compiled under AVX or AVX2 when called from e.g.
// UnaryOpsKernel.cpp
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <type_traits>
#if AT_MKL_ENABLED() && !defined(__APPLE__)
#include <mkl.h>
#endif
#define DL_RUNTIME_BUG(op, type_)
#define DL_RUNTIME_BUG_BFLOAT16()
namespace at {
namespace vml {
inline namespace CPU_CAPABILITY {
using namespace vec;
template <typename scalar_t>
inline void vrsqrt(scalar_t* out, scalar_t* in, int64_t size) {
parallel_for(0, size, 2048, [out, in](int64_t begin, int64_t end) {
map(
[](const Vectorized<scalar_t>& x) {
return Vectorized<scalar_t>((scalar_t)(1)) / x.sqrt();
},
out + begin,
in + begin,
end - begin);
});
}
// NB: We ignore numerical errors by convention and leave them to the user
// We unfortunately need to duplicate code here to deal with the SSE-AVX
// transition bug (see [Note SSE-AVX transitions]). As soon as we can expect
// users to use a version of glibc newer than 2.23 we will be able to ditch
// this. This duplication is also necessary since not all functions (e.g. rsqrt)
// might be part of cmath.
// for BFloat16, we need specialize it, the reason is that avx/avx2 and glic=2.23,
// we can't give DL_RUNTIME_BUG volatile type in x = std::op(x);
#define IMPLEMENT_VML_BUG(op) \
template <typename scalar_t> \
inline void v##op(scalar_t* out, const scalar_t* in, int64_t size) { \
DL_RUNTIME_BUG(op, scalar_t) \
parallel_for(0, size, 2048, [out, in](int64_t begin, int64_t end) { \
map([](const Vectorized<scalar_t>& x) { return x.op(); }, \
out + begin, \
in + begin, \
end - begin); \
}); \
} \
template <> \
inline void v##op<c10::BFloat16>( \
c10::BFloat16* out, const c10::BFloat16* in, int64_t size) { \
parallel_for(0, size, 2048, [out, in](int64_t begin, int64_t end) { \
DL_RUNTIME_BUG_BFLOAT16() \
using vecscalar_t = vec_scalar_t<c10::BFloat16>; \
map([](const Vectorized<vecscalar_t>& x) { return x.op(); }, \
out + begin, \
in + begin, \
end - begin); \
}); \
}
#define IMPLEMENT_VML(op) \
template <typename scalar_t> \
inline void v##op(scalar_t* out, const scalar_t* in, int64_t size) { \
parallel_for(0, size, 2048, [out, in](int64_t begin, int64_t end) { \
using vecscalar_t = vec_scalar_t<scalar_t>; \
map([](const Vectorized<vecscalar_t>& x) { return x.op(); }, \
out + begin, \
in + begin, \
end - begin); \
}); \
}
IMPLEMENT_VML(abs)
IMPLEMENT_VML(acos)
IMPLEMENT_VML(asin)
IMPLEMENT_VML(atan)
IMPLEMENT_VML(ceil)
IMPLEMENT_VML(cos)
// IMPLEMENT_VML_BUG(cosh)
IMPLEMENT_VML(erf)
IMPLEMENT_VML(erfc)
IMPLEMENT_VML(erfinv)
IMPLEMENT_VML(exp)
IMPLEMENT_VML(expm1)
IMPLEMENT_VML(floor)
IMPLEMENT_VML(i0)
IMPLEMENT_VML(i0e)
IMPLEMENT_VML(reciprocal)
IMPLEMENT_VML(log)
IMPLEMENT_VML(log10)
IMPLEMENT_VML(log1p)
IMPLEMENT_VML(log2)
IMPLEMENT_VML(neg)
IMPLEMENT_VML(sin)
// IMPLEMENT_VML_BUG(sinh)
IMPLEMENT_VML(sqrt)
IMPLEMENT_VML(round)
IMPLEMENT_VML(rsqrt)
IMPLEMENT_VML(tan)
IMPLEMENT_VML(tanh)
IMPLEMENT_VML(trunc)
IMPLEMENT_VML(lgamma)
#if AT_MKL_ENABLED() && !defined(__APPLE__)
// NB: LP64 MKL is the most commonly used and thus we assume it here. That means
// we need to expect MKL_INT to be of type int, which implies int32_t in most
// cases.
static_assert(
std::is_same<MKL_INT, int32_t>::value,
"MKL_INT is assumed to be int32_t");
#define IMPLEMENT_VML_MKL_STUB(op, mklop, type, mkltype) \
template <> \
inline void v##op(type * out, const type * in, int64_t size) { \
int64_t max_mkl_ind = std::numeric_limits<MKL_INT>::max(); \
if (size <= static_cast<int64_t>(max_mkl_ind)) { \
vm##mkltype##mklop( \
size, in, out, VML_HA | VML_FTZDAZ_OFF | VML_ERRMODE_IGNORE); \
} else { \
MKL_INT ind = 0; \
int64_t chunks = size / max_mkl_ind; \
int64_t rest = size % max_mkl_ind; \
for (; ind < chunks; ind++) { \
vm##mkltype##mklop( \
max_mkl_ind, \
in + ind * max_mkl_ind, \
out + ind * max_mkl_ind, \
VML_HA | VML_FTZDAZ_OFF | VML_ERRMODE_IGNORE); \
} \
vm##mkltype##mklop( \
rest, \
in + ind * max_mkl_ind, \
out + ind * max_mkl_ind, \
VML_HA | VML_FTZDAZ_OFF | VML_ERRMODE_IGNORE); \
} \
}
#define IMPLEMENT_VML_MKL(op, mklop) \
IMPLEMENT_VML_MKL_STUB(op, mklop, float, s) \
IMPLEMENT_VML_MKL_STUB(op, mklop, double, d)
// NB: abs, cosh and sinh were temporarily disabled due to issues with Apple
// NB: expm1 is disabled because on some configs it produces expm1(nan)=-1
IMPLEMENT_VML_MKL(abs, Abs)
IMPLEMENT_VML_MKL(acos, Acos)
IMPLEMENT_VML_MKL(asin, Asin)
IMPLEMENT_VML_MKL(atan, Atan)
IMPLEMENT_VML_MKL(cos, Cos)
// IMPLEMENT_VML_MKL(cosh, Cosh)
IMPLEMENT_VML_MKL(erf, Erf)
IMPLEMENT_VML_MKL(erfc, Erfc)
IMPLEMENT_VML_MKL(erfinv, ErfInv)
IMPLEMENT_VML_MKL(exp, Exp)
// IMPLEMENT_VML_MKL(expm1, Expm1)
IMPLEMENT_VML_MKL(log, Ln)
IMPLEMENT_VML_MKL(log10, Log10)
IMPLEMENT_VML_MKL(log1p, Log1p)
IMPLEMENT_VML_MKL(sin, Sin)
// IMPLEMENT_VML_MKL(sinh, Sinh)
IMPLEMENT_VML_MKL(sqrt, Sqrt)
IMPLEMENT_VML_MKL(tan, Tan)
IMPLEMENT_VML_MKL(tanh, Tanh)
IMPLEMENT_VML_MKL(trunc, Trunc)
#if INTEL_MKL_VERSION >= 20180406
IMPLEMENT_VML_MKL(log2, Log2)
#endif
#endif
} // namespace
} // namespace vml
} // namespace at
|