File size: 16,608 Bytes
9dd3461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
#pragma once

// DO NOT DEFINE STATIC DATA IN THIS HEADER!
// See Note [Do not compile initializers with AVX]

#include <ATen/cpu/vec/intrinsics.h>
#include <ATen/cpu/vec/vec_base.h>
#include <c10/util/irange.h>
#if defined(CPU_CAPABILITY_AVX512) && !defined(_MSC_VER)
#include <sleef.h>
#endif

namespace at {
namespace vec {
// See Note [CPU_CAPABILITY namespace]
inline namespace CPU_CAPABILITY {

#if defined(CPU_CAPABILITY_AVX512) && !defined(_MSC_VER)

template <> class Vectorized<float> {
private:
  static constexpr __m512i zero_vec {0, 0, 0, 0, 0, 0, 0, 0};
public:
  __m512 values;
  using value_type = float;
  using size_type = int;
  static constexpr size_type size() {
    return 16;
  }
  Vectorized() {}
  Vectorized(__m512 v) : values(v) {}
  Vectorized(float val) {
    values = _mm512_set1_ps(val);
  }
  Vectorized(float val1, float val2, float val3, float val4,
         float val5, float val6, float val7, float val8,
         float val9, float val10, float val11, float val12,
         float val13, float val14, float val15, float val16) {
    values = _mm512_setr_ps(val1, val2, val3, val4, val5, val6, val7, val8,
                            val9, val10, val11, val12, val13, val14, val15, val16);
  }
  operator __m512() const {
    return values;
  }
  template <int64_t mask>
  static Vectorized<float> blend(const Vectorized<float>& a, const Vectorized<float>& b) {
    return _mm512_mask_blend_ps(mask, a.values, b.values);
  }
  static Vectorized<float> blendv(const Vectorized<float>& a, const Vectorized<float>& b,
                              const Vectorized<float>& mask) {
    auto all_ones = _mm512_set1_epi32(0xFFFFFFFF);
    auto mmask = _mm512_cmp_epi32_mask(_mm512_castps_si512(mask.values), all_ones, _MM_CMPINT_EQ);
    return _mm512_mask_blend_ps(mmask, a.values, b.values);
  }
  template<typename step_t>
  static Vectorized<float> arange(float base = 0.f, step_t step = static_cast<step_t>(1)) {
    return Vectorized<float>(
      base,            base +     step, base + 2 * step, base + 3 * step,
      base + 4 * step, base + 5 * step, base + 6 * step, base + 7 * step,
      base + 8 * step, base + 9 * step, base + 10 * step, base + 11 * step,
      base + 12 * step, base + 13 * step, base + 14 * step, base + 15 * step);
  }
  static Vectorized<float> set(const Vectorized<float>& a, const Vectorized<float>& b,
                           int64_t count = size()) {
    switch (count) {
      case 0:
        return a;
      case 1:
        return blend<1>(a, b);
      case 2:
        return blend<3>(a, b);
      case 3:
        return blend<7>(a, b);
      case 4:
        return blend<15>(a, b);
      case 5:
        return blend<31>(a, b);
      case 6:
        return blend<63>(a, b);
      case 7:
        return blend<127>(a, b);
      case 8:
        return blend<255>(a, b);
      case 9:
        return blend<511>(a, b);
      case 10:
        return blend<1023>(a, b);
      case 11:
        return blend<2047>(a, b);
      case 12:
        return blend<4095>(a, b);
      case 13:
        return blend<8191>(a, b);
      case 14:
        return blend<16383>(a, b);
      case 15:
        return blend<32767>(a, b);
    }
    return b;
  }
  static Vectorized<float> loadu(const void* ptr, int64_t count = size()) {
    if (count == size())
      return _mm512_loadu_ps(reinterpret_cast<const float*>(ptr));
    __at_align__ float tmp_values[size()];
    // Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
    // for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
    // instructions while a loop would be compiled to one instruction.
    for (const auto i : c10::irange(size())) {
      tmp_values[i] = 0.0;
    }
    std::memcpy(
        tmp_values, reinterpret_cast<const float*>(ptr), count * sizeof(float));
    return _mm512_loadu_ps(tmp_values);
  }
  void store(void* ptr, int64_t count = size()) const {
    if (count == size()) {
      _mm512_storeu_ps(reinterpret_cast<float*>(ptr), values);
    } else if (count > 0) {
      float tmp_values[size()];
      _mm512_storeu_ps(reinterpret_cast<float*>(tmp_values), values);
      std::memcpy(ptr, tmp_values, count * sizeof(float));
    }
  }
  const float& operator[](int idx) const  = delete;
  float& operator[](int idx) = delete;
  int zero_mask() const {
    // returns an integer mask where all zero elements are translated to 1-bit and others are translated to 0-bit
    __mmask16 cmp = _mm512_cmp_ps_mask(values, _mm512_set1_ps(0.0), _CMP_EQ_OQ);
    return static_cast<int32_t>(cmp);
  }
  Vectorized<float> isnan() const {
    auto mask =  _mm512_cmp_ps_mask(values, _mm512_set1_ps(0.0), _CMP_UNORD_Q);
    return _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, mask,
                                                      0xFFFFFFFF));
  }
  Vectorized<float> map(float (*const f)(float)) const {
    __at_align__ float tmp[size()];
    store(tmp);
    for (const auto i : c10::irange(size())) {
      tmp[i] = f(tmp[i]);
    }
    return loadu(tmp);
  }
  Vectorized<float> abs() const {
    auto mask = _mm512_set1_ps(-0.f);
    return _mm512_andnot_ps(mask, values);
  }
  Vectorized<float> angle() const {
    __m512 zero_vec = _mm512_set1_ps(0.f);
    const auto nan_vec = _mm512_set1_ps(NAN);
    const auto not_nan_mask = _mm512_cmp_ps_mask(values, values, _CMP_EQ_OQ);
    const auto not_nan_vec = _mm512_mask_set1_epi32(_mm512_castps_si512(zero_vec),
                                                    not_nan_mask, 0xFFFFFFFF);
    const auto nan_mask = _mm512_cmp_ps_mask(_mm512_castsi512_ps(not_nan_vec),
                                             zero_vec, _CMP_EQ_OQ);
    const auto pi = _mm512_set1_ps(c10::pi<double>);

    const auto neg_mask = _mm512_cmp_ps_mask(values, zero_vec, _CMP_LT_OQ);
    auto angle = _mm512_mask_blend_ps(neg_mask, zero_vec, pi);
    angle = _mm512_mask_blend_ps(nan_mask, angle, nan_vec);
    return angle;
  }
  Vectorized<float> real() const {
    return *this;
  }
  Vectorized<float> imag() const {
    return _mm512_set1_ps(0);
  }
  Vectorized<float> conj() const {
    return *this;
  }
  Vectorized<float> acos() const {
    return Vectorized<float>(Sleef_acosf16_u10(values));
  }
  Vectorized<float> asin() const {
    return Vectorized<float>(Sleef_asinf16_u10(values));
  }
  Vectorized<float> atan() const {
    return Vectorized<float>(Sleef_atanf16_u10(values));
  }
  Vectorized<float> atan2(const Vectorized<float> &b) const {
    return Vectorized<float>(Sleef_atan2f16_u10(values, b));
  }
  Vectorized<float> copysign(const Vectorized<float> &sign) const {
    return Vectorized<float>(Sleef_copysignf16(values, sign));
  }
  Vectorized<float> erf() const {
    return Vectorized<float>(Sleef_erff16_u10(values));
  }
  Vectorized<float> erfc() const {
    return Vectorized<float>(Sleef_erfcf16_u15(values));
  }
  Vectorized<float> erfinv() const {
    return map(calc_erfinv);
  }
  Vectorized<float> exp() const {
    return Vectorized<float>(Sleef_expf16_u10(values));
  }
  Vectorized<float> expm1() const {
    return Vectorized<float>(Sleef_expm1f16_u10(values));
  }
  Vectorized<float> fmod(const Vectorized<float>& q) const {
    return Vectorized<float>(Sleef_fmodf16(values, q));
  }
  Vectorized<float> log() const {
    return Vectorized<float>(Sleef_logf16_u10(values));
  }
  Vectorized<float> log2() const {
    return Vectorized<float>(Sleef_log2f16_u10(values));
  }
  Vectorized<float> log10() const {
    return Vectorized<float>(Sleef_log10f16_u10(values));
  }
  Vectorized<float> log1p() const {
    return Vectorized<float>(Sleef_log1pf16_u10(values));
  }
  Vectorized<float> frac() const;
  Vectorized<float> sin() const {
    return Vectorized<float>(Sleef_sinf16_u10(values));
  }
  Vectorized<float> sinh() const {
    return Vectorized<float>(Sleef_sinhf16_u10(values));
  }
  Vectorized<float> cos() const {
    return Vectorized<float>(Sleef_cosf16_u10(values));
  }
  Vectorized<float> cosh() const {
    return Vectorized<float>(Sleef_coshf16_u10(values));
  }
  Vectorized<float> ceil() const {
    return _mm512_ceil_ps(values);
  }
  Vectorized<float> floor() const {
    return _mm512_floor_ps(values);
  }
  Vectorized<float> hypot(const Vectorized<float> &b) const {
    return Vectorized<float>(Sleef_hypotf16_u05(values, b));
  }
  Vectorized<float> i0() const {
    return map(calc_i0);
  }
  Vectorized<float> i0e() const {
    return map(calc_i0e);
  }
  Vectorized<float> igamma(const Vectorized<float> &x) const {
    __at_align__ float tmp[size()];
    __at_align__ float tmp_x[size()];
    store(tmp);
    x.store(tmp_x);
    for (const auto i : c10::irange(size())) {
      tmp[i] = calc_igamma(tmp[i], tmp_x[i]);
    }
    return loadu(tmp);
  }
  Vectorized<float> igammac(const Vectorized<float> &x) const {
    __at_align__ float tmp[size()];
    __at_align__ float tmp_x[size()];
    store(tmp);
    x.store(tmp_x);
    for (const auto i : c10::irange(size())) {
      tmp[i] = calc_igammac(tmp[i], tmp_x[i]);
    }
    return loadu(tmp);
  }
  Vectorized<float> neg() const {
    return _mm512_xor_ps(_mm512_set1_ps(-0.f), values);
  }
  Vectorized<float> nextafter(const Vectorized<float> &b) const {
    return Vectorized<float>(Sleef_nextafterf16(values, b));
  }
  Vectorized<float> round() const {
    return _mm512_roundscale_ps(values, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
  }
  Vectorized<float> tan() const {
    return Vectorized<float>(Sleef_tanf16_u10(values));
  }
  Vectorized<float> tanh() const {
    return Vectorized<float>(Sleef_tanhf16_u10(values));
  }
  Vectorized<float> trunc() const {
    return _mm512_roundscale_ps(values, (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC));
  }
  Vectorized<float> lgamma() const {
    return Vectorized<float>(Sleef_lgammaf16_u10(values));
  }
  Vectorized<float> sqrt() const {
    return _mm512_sqrt_ps(values);
  }
  Vectorized<float> reciprocal() const {
    return _mm512_div_ps(_mm512_set1_ps(1), values);
  }
  Vectorized<float> rsqrt() const {
    return _mm512_div_ps(_mm512_set1_ps(1), _mm512_sqrt_ps(values));
  }
  Vectorized<float> pow(const Vectorized<float> &b) const {
    return Vectorized<float>(Sleef_powf16_u10(values, b));
  }
  // Comparison using the _CMP_**_OQ predicate.
  //   `O`: get false if an operand is NaN
  //   `Q`: do not raise if an operand is NaN
  Vectorized<float> operator==(const Vectorized<float>& other) const {
    auto mask = _mm512_cmp_ps_mask(values, other.values, _CMP_EQ_OQ);
    return _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, mask,
                                                      0xFFFFFFFF));
  }

  Vectorized<float> operator!=(const Vectorized<float>& other) const {
    auto mask = _mm512_cmp_ps_mask(values, other.values, _CMP_NEQ_OQ);
    return _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, mask,
                                                      0xFFFFFFFF));
  }

  Vectorized<float> operator<(const Vectorized<float>& other) const {
    auto mask = _mm512_cmp_ps_mask(values, other.values, _CMP_LT_OQ);
    return _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, mask,
                                                      0xFFFFFFFF));
  }

  Vectorized<float> operator<=(const Vectorized<float>& other) const {
    auto mask = _mm512_cmp_ps_mask(values, other.values, _CMP_LE_OQ);
    return _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, mask,
                                                      0xFFFFFFFF));
  }

  Vectorized<float> operator>(const Vectorized<float>& other) const {
    auto mask = _mm512_cmp_ps_mask(values, other.values, _CMP_GT_OQ);
    return _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, mask,
                                                      0xFFFFFFFF));
  }

  Vectorized<float> operator>=(const Vectorized<float>& other) const {
    auto mask = _mm512_cmp_ps_mask(values, other.values, _CMP_GE_OQ);
    return _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, mask,
                                                      0xFFFFFFFF));
  }

  Vectorized<float> eq(const Vectorized<float>& other) const;
  Vectorized<float> ne(const Vectorized<float>& other) const;
  Vectorized<float> gt(const Vectorized<float>& other) const;
  Vectorized<float> ge(const Vectorized<float>& other) const;
  Vectorized<float> lt(const Vectorized<float>& other) const;
  Vectorized<float> le(const Vectorized<float>& other) const;
};

template <>
Vectorized<float> inline operator+(const Vectorized<float>& a, const Vectorized<float>& b) {
  return _mm512_add_ps(a, b);
}

template <>
Vectorized<float> inline operator-(const Vectorized<float>& a, const Vectorized<float>& b) {
  return _mm512_sub_ps(a, b);
}

template <>
Vectorized<float> inline operator*(const Vectorized<float>& a, const Vectorized<float>& b) {
  return _mm512_mul_ps(a, b);
}

template <>
Vectorized<float> inline operator/(const Vectorized<float>& a, const Vectorized<float>& b) {
  return _mm512_div_ps(a, b);
}

// frac. Implement this here so we can use subtraction
inline Vectorized<float> Vectorized<float>::frac() const {
  return *this - this->trunc();
}

// Implements the IEEE 754 201X `maximum` operation, which propagates NaN if
// either input is a NaN.
template <>
Vectorized<float> inline maximum(const Vectorized<float>& a, const Vectorized<float>& b) {
  auto zero_vec = _mm512_set1_epi32(0);
  auto max = _mm512_max_ps(a, b);
  auto isnan_mask = _mm512_cmp_ps_mask(a, b, _CMP_UNORD_Q);
  auto isnan = _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, isnan_mask,
                                                          0xFFFFFFFF));
  // Exploit the fact that all-ones is a NaN.
  return _mm512_or_ps(max, isnan);
}

// Implements the IEEE 754 201X `minimum` operation, which propagates NaN if
// either input is a NaN.
template <>
Vectorized<float> inline minimum(const Vectorized<float>& a, const Vectorized<float>& b) {
  auto zero_vec = _mm512_set1_epi32(0);
  auto min = _mm512_min_ps(a, b);
  auto isnan_mask = _mm512_cmp_ps_mask(a, b, _CMP_UNORD_Q);
  auto isnan = _mm512_castsi512_ps(_mm512_mask_set1_epi32(zero_vec, isnan_mask,
                                                          0xFFFFFFFF));
  // Exploit the fact that all-ones is a NaN.
  return _mm512_or_ps(min, isnan);
}

template <>
Vectorized<float> inline clamp(const Vectorized<float>& a, const Vectorized<float>& min, const Vectorized<float>& max) {
  return _mm512_min_ps(max, _mm512_max_ps(min, a));
}

template <>
Vectorized<float> inline clamp_max(const Vectorized<float>& a, const Vectorized<float>& max) {
  return _mm512_min_ps(max, a);
}

template <>
Vectorized<float> inline clamp_min(const Vectorized<float>& a, const Vectorized<float>& min) {
  return _mm512_max_ps(min, a);
}

template <>
Vectorized<float> inline operator&(const Vectorized<float>& a, const Vectorized<float>& b) {
  return _mm512_and_ps(a, b);
}

template <>
Vectorized<float> inline operator|(const Vectorized<float>& a, const Vectorized<float>& b) {
  return _mm512_or_ps(a, b);
}

template <>
Vectorized<float> inline operator^(const Vectorized<float>& a, const Vectorized<float>& b) {
  return _mm512_xor_ps(a, b);
}

inline Vectorized<float> Vectorized<float>::eq(const Vectorized<float>& other) const {
  return (*this == other) & Vectorized<float>(1.0f);
}

inline Vectorized<float> Vectorized<float>::ne(const Vectorized<float>& other) const {
  return (*this != other) & Vectorized<float>(1.0f);
}

inline Vectorized<float> Vectorized<float>::gt(const Vectorized<float>& other) const {
  return (*this > other) & Vectorized<float>(1.0f);
}

inline Vectorized<float> Vectorized<float>::ge(const Vectorized<float>& other) const {
  return (*this >= other) & Vectorized<float>(1.0f);
}

inline Vectorized<float> Vectorized<float>::lt(const Vectorized<float>& other) const {
  return (*this < other) & Vectorized<float>(1.0f);
}

inline Vectorized<float> Vectorized<float>::le(const Vectorized<float>& other) const {
  return (*this <= other) & Vectorized<float>(1.0f);
}

template <>
inline void convert(const float* src, float* dst, int64_t n) {
  int64_t i;
#pragma unroll
  for (i = 0; i <= (n - Vectorized<float>::size()); i += Vectorized<float>::size()) {
    _mm512_storeu_ps(dst + i, _mm512_loadu_ps(src + i));
  }
#pragma unroll
  for (; i < n; i++) {
    dst[i] = src[i];
  }
}

template <>
Vectorized<float> inline fmadd(const Vectorized<float>& a, const Vectorized<float>& b, const Vectorized<float>& c) {
  return _mm512_fmadd_ps(a, b, c);
}

#endif

}}}