File size: 9,257 Bytes
9dd3461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
from dataclasses import dataclass
import os
import dataclasses
import io
import pickle
from typing import List, Union, Dict, cast

import torch
from torch import Tensor
from torch.futures import Future
from pathlib import Path

from .metadata import (
    Metadata,
    MetadataIndex,
)
from .storage import (
    StorageReader,
    StorageWriter,
    WriteResult,
)

from .planner import (
    LoadItemType,
    LoadPlanner,
    LoadPlan,
    SavePlan,
    SavePlanner,
    ReadItem,
    WriteItem,
    WriteItemType,
)

from torch.distributed._shard._utils import narrow_tensor_by_index


@dataclass
class _StorageInfo:
    """
    This is the per entry storage info
    """
    relative_path: str
    offset: int
    length: int

@dataclass
class _StoragePrefix:
    prefix: str

DEFAULT_SUFIX = ".distcp"

def _trim(tensor: torch.Tensor) -> torch.Tensor:
    tensor = tensor.detach().cpu()
    if tensor.storage().size() != tensor.numel():
        tensor = tensor.clone()
    return tensor

def _result_from_write_item(item: WriteItem, size_in_bytes, storage_data) -> WriteResult:
    return WriteResult(
        index=item.index,
        size_in_bytes=size_in_bytes,
        storage_data=storage_data)

def _write_item(stream, data, write_item, storage_key):
    offset = stream.tell()

    if write_item.type == WriteItemType.BYTE_IO:
        assert isinstance(data, io.BytesIO)
        stream.write(data.getbuffer())
    else:
        assert isinstance(data, torch.Tensor)
        assert data.device == torch.device("cpu")
        torch.save(data, stream)
    length = stream.tell() - offset

    return _result_from_write_item(
        write_item,
        length,
        _StorageInfo(storage_key, offset, length)
    )

def _write_files_from_queue(
    file_queue: List,
    planner: SavePlanner,
    use_fsync: bool,
):
    write_results = []

    for file_path, file_name, write_items in file_queue:
        tensor_w = [wi for wi in write_items if wi.type != WriteItemType.BYTE_IO]
        bytes_w = [wi for wi in write_items if wi.type == WriteItemType.BYTE_IO]

        with open(file_path, "wb") as stream:
            for write_item in bytes_w:
                data = planner.resolve_data(write_item)
                write_results.append(_write_item(stream, data, write_item, file_name))

            for write_item in tensor_w:
                tensor = _trim(cast(torch.Tensor, planner.resolve_data(write_item)))
                assert not tensor.is_cuda
                write_results.append(_write_item(stream, tensor, write_item, file_name))

            if use_fsync:
                os.fsync(stream.fileno())

    return write_results

class FileSystemWriter(StorageWriter):
    """
    Basic implementation of StorageWriter using file IO.

    This implementation makes the following assumptions and simplifications:

    * The checkpoint path is an empty or non-existing directory.
    * File creation is atomic

    The checkpoint consist of one file per write request plus
    a `.metadata` file with the serialized metadata.

    """
    def __init__(
        self,
        path: Union[str, os.PathLike],
        single_file_per_rank: bool = False,
        sync_files: bool = True,
    ) -> None:
        """
        Initialize the writer pointing to `path`

        Args:
            path: diretory where the checkpoint will be writen to.
            single_file_per_rank: Produce one file per rank instead of one file per tensor/blob. Default to True.
            sync_files: force files to be synced to permanent storage. Default to True.

        N. B. If sync_files is disabled, there's no guarantee that the checkpoint will be consistent in the case of a failure.
        """
        super().__init__()
        self.path = Path(path)
        self.single_file_per_rank = single_file_per_rank
        self.sync_files = sync_files

    def init(self, is_coordinator: bool) -> None:
        pass

    def prepare_local_plan(self, plan: SavePlan) -> SavePlan:
        # There's no storage input in the local plan
        return plan

    def prepare_global_plan(self, global_plan: List[SavePlan]) -> List[SavePlan]:
        self.path.mkdir(parents=True, exist_ok=True)

        new_plans = [
            dataclasses.replace(plan, storage_data=_StoragePrefix(f"__{i}_")) for i, plan in enumerate(global_plan)
        ]
        return new_plans

    def write_data(
        self,
        plan: SavePlan,
        planner: SavePlanner,
    ) -> Future[List[WriteResult]]:
        storage_plan: _StoragePrefix = plan.storage_data
        file_count = 0

        def gen_file():
            nonlocal file_count
            file_name = f"{storage_plan.prefix}{file_count}{DEFAULT_SUFIX}"
            file_count += 1
            return file_name

        file_queue = []
        if self.single_file_per_rank:
            file_name = gen_file()
            file_queue.append((self.path / file_name, file_name, plan.items))
        else:
            for item in plan.items:
                file_name = gen_file()
                file_queue.append((self.path / file_name, file_name, [item]))

        results = _write_files_from_queue(
            file_queue=file_queue,
            planner=planner,
            use_fsync=self.sync_files,
        )

        fut: Future[List[WriteResult]] = Future()
        fut.set_result(results)
        return fut

    def finish(self, metadata: Metadata, results: List[List[WriteResult]]) -> None:
        storage_md = dict()
        for wr_list in results:
            storage_md.update({
                wr.index: wr.storage_data for wr in wr_list
            })
        metadata.storage_data = storage_md
        with (self.path / ".metadata.tmp").open("wb") as metadata_file:
            pickle.dump(metadata, metadata_file)
            os.fsync(metadata_file.fileno())

        (self.path / ".metadata.tmp").rename(self.path / ".metadata")


class SlicedBufferedReader(io.BufferedReader):
    # TODO override read to handle (-1) correctly
    def __init__(self, base_stream: io.RawIOBase, offset: int, len: int):
        super().__init__(base_stream)
        self.offset = offset
        self.len = len
        self.seek(0)

    def seek(self, __offset: int, __whence: int = os.SEEK_SET) -> int:
        if __whence == os.SEEK_SET:
            __offset = self.offset + __offset
        elif __whence == os.SEEK_END:
            __whence = os.SEEK_SET
            __offset = (self.offset + self.len) - __offset
        return super().seek(__offset, __whence)

    def tell(self) -> int:
        return super().tell() - self.offset

class FileSystemReader(StorageReader):
    def __init__(self, path: Union[str, os.PathLike]) -> None:
        super().__init__()
        self.path = Path(path)
        self.storage_data: Dict[MetadataIndex, _StorageInfo] = dict()

    def _slice_file(self, file, sinfo: _StorageInfo):
        return SlicedBufferedReader(
            io.FileIO(file.fileno(), closefd=False),
            sinfo.offset, sinfo.length
        )

    def read_data(
        self,
        plan: LoadPlan,
        planner: LoadPlanner
    ) -> Future[None]:
        # group requests by file
        per_file: Dict[str, List[ReadItem]] = dict()
        for read_item in plan.items:
            item_md = self.storage_data[read_item.storage_index]
            path = item_md.relative_path
            per_file.setdefault(path, []).append(read_item)

        for relative_path, reqs in per_file.items():
            with (self.path / relative_path).open("rb") as file:
                # TODO sort by offset and cache the reading
                for req in reqs:
                    item_md = self.storage_data[req.storage_index]
                    file_slice = self._slice_file(file, item_md)
                    if req.type == LoadItemType.BYTE_IO:
                        bytes = io.BytesIO(file_slice.read(item_md.length))
                        bytes.seek(0)
                        planner.load_bytes(req, bytes)
                    else:
                        tensor = cast(Tensor, torch.load(file_slice, map_location="cpu"))
                        tensor = narrow_tensor_by_index(tensor, req.storage_offsets, req.lengths)
                        target_tensor = planner.resolve_tensor(req).detach()

                        assert (
                            target_tensor.size() == tensor.size()
                        ), f"req {req.storage_index} mismatch sizes {target_tensor.size()} vs {tensor.size()}"
                        target_tensor.copy_(tensor)
                        planner.commit_tensor(req, target_tensor)

        fut: Future = Future()
        fut.set_result(None)
        return fut

    # Implementating the abstract function in StorageReader
    def read_metadata(self) -> Metadata:
        with (self.path / ".metadata").open("rb") as metadata_file:
            return pickle.load(metadata_file)

    def init(self, metadata: Metadata, is_coordinator: bool) -> None:
        self.storage_data = metadata.storage_data
        assert self.storage_data is not None

    def prepare_local_plan(self, plan: LoadPlan) -> LoadPlan:
        return plan

    def prepare_global_plan(self, global_plan: List[LoadPlan]) -> List[LoadPlan]:
        return global_plan