File size: 19,708 Bytes
9dd3461 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Spectrogram decomposition
=========================
.. autosummary::
:toctree: generated/
decompose
hpss
nn_filter
"""
import numpy as np
import scipy.sparse
from scipy.ndimage import median_filter
import sklearn.decomposition
from . import core
from ._cache import cache
from . import segment
from . import util
from .util.exceptions import ParameterError
from .util.decorators import deprecate_positional_args
__all__ = ["decompose", "hpss", "nn_filter"]
@deprecate_positional_args
def decompose(
S, *, n_components=None, transformer=None, sort=False, fit=True, **kwargs
):
"""Decompose a feature matrix.
Given a spectrogram ``S``, produce a decomposition into ``components``
and ``activations`` such that ``S ~= components.dot(activations)``.
By default, this is done with with non-negative matrix factorization (NMF),
but any `sklearn.decomposition`-type object will work.
Parameters
----------
S : np.ndarray [shape=(..., n_features, n_samples), dtype=float]
The input feature matrix (e.g., magnitude spectrogram)
If the input has multiple channels (leading dimensions), they will be automatically
flattened prior to decomposition.
If the input is multi-channel, channels and features are automatically flattened into
a single axis before the decomposition.
For example, a stereo input `S` with shape `(2, n_features, n_samples)` is
automatically reshaped to `(2 * n_features, n_samples)`.
n_components : int > 0 [scalar] or None
number of desired components
if None, then ``n_features`` components are used
transformer : None or object
If None, use `sklearn.decomposition.NMF`
Otherwise, any object with a similar interface to NMF should work.
``transformer`` must follow the scikit-learn convention, where
input data is ``(n_samples, n_features)``.
`transformer.fit_transform()` will be run on ``S.T`` (not ``S``),
the return value of which is stored (transposed) as ``activations``
The components will be retrieved as ``transformer.components_.T``::
S ~= np.dot(activations, transformer.components_).T
or equivalently::
S ~= np.dot(transformer.components_.T, activations.T)
sort : bool
If ``True``, components are sorted by ascending peak frequency.
.. note:: If used with ``transformer``, sorting is applied to copies
of the decomposition parameters, and not to ``transformer``
internal parameters.
.. warning:: If the input array has more than two dimensions
(e.g., if it's a multi-channel spectrogram), then axis sorting
is not supported and a `ParameterError` exception is raised.
fit : bool
If `True`, components are estimated from the input ``S``.
If `False`, components are assumed to be pre-computed and stored
in ``transformer``, and are not changed.
**kwargs : Additional keyword arguments to the default transformer
`sklearn.decomposition.NMF`
Returns
-------
components: np.ndarray [shape=(..., n_features, n_components)]
matrix of components (basis elements).
activations: np.ndarray [shape=(n_components, n_samples)]
transformed matrix/activation matrix
Raises
------
ParameterError
if ``fit`` is False and no ``transformer`` object is provided.
if the input array is multi-channel and ``sort=True`` is specified.
See Also
--------
sklearn.decomposition : SciKit-Learn matrix decomposition modules
Examples
--------
Decompose a magnitude spectrogram into 16 components with NMF
>>> y, sr = librosa.load(librosa.ex('pistachio'), duration=5)
>>> S = np.abs(librosa.stft(y))
>>> comps, acts = librosa.decompose.decompose(S, n_components=16)
Sort components by ascending peak frequency
>>> comps, acts = librosa.decompose.decompose(S, n_components=16,
... sort=True)
Or with sparse dictionary learning
>>> import sklearn.decomposition
>>> T = sklearn.decomposition.MiniBatchDictionaryLearning(n_components=16)
>>> scomps, sacts = librosa.decompose.decompose(S, transformer=T, sort=True)
>>> import matplotlib.pyplot as plt
>>> layout = [list(".AAAA"), list("BCCCC"), list(".DDDD")]
>>> fig, ax = plt.subplot_mosaic(layout, constrained_layout=True)
>>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max),
... y_axis='log', x_axis='time', ax=ax['A'])
>>> ax['A'].set(title='Input spectrogram')
>>> ax['A'].label_outer()
>>> librosa.display.specshow(librosa.amplitude_to_db(comps,
>>> ref=np.max),
>>> y_axis='log', ax=ax['B'])
>>> ax['B'].set(title='Components')
>>> ax['B'].label_outer()
>>> ax['B'].sharey(ax['A'])
>>> librosa.display.specshow(acts, x_axis='time', ax=ax['C'], cmap='gray_r')
>>> ax['C'].set(ylabel='Components', title='Activations')
>>> ax['C'].sharex(ax['A'])
>>> ax['C'].label_outer()
>>> S_approx = comps.dot(acts)
>>> img = librosa.display.specshow(librosa.amplitude_to_db(S_approx,
>>> ref=np.max),
>>> y_axis='log', x_axis='time', ax=ax['D'])
>>> ax['D'].set(title='Reconstructed spectrogram')
>>> ax['D'].sharex(ax['A'])
>>> ax['D'].sharey(ax['A'])
>>> ax['D'].label_outer()
>>> fig.colorbar(img, ax=list(ax.values()), format="%+2.f dB")
"""
# Do a swapaxes and unroll
orig_shape = list(S.shape)
if S.ndim > 2 and sort:
raise ParameterError(
"Parameter sort=True is unsupported for input with more than two dimensions"
)
# Transpose S and unroll feature dimensions
# Use order='F' here to preserve the temporal ordering
S = S.T.reshape((S.shape[-1], -1), order="F")
if n_components is None:
n_components = S.shape[-1]
if transformer is None:
if fit is False:
raise ParameterError("fit must be True if transformer is None")
transformer = sklearn.decomposition.NMF(n_components=n_components, **kwargs)
if fit:
activations = transformer.fit_transform(S).T
else:
activations = transformer.transform(S).T
components = transformer.components_
component_shape = orig_shape[:-1] + [-1]
# use order='F' here to preserve component ordering
components = components.reshape(component_shape[::-1], order="F").T
if sort:
components, idx = util.axis_sort(components, index=True)
activations = activations[idx]
return components, activations
@cache(level=30)
@deprecate_positional_args
def hpss(S, *, kernel_size=31, power=2.0, mask=False, margin=1.0):
"""Median-filtering harmonic percussive source separation (HPSS).
If ``margin = 1.0``, decomposes an input spectrogram ``S = H + P``
where ``H`` contains the harmonic components,
and ``P`` contains the percussive components.
If ``margin > 1.0``, decomposes an input spectrogram ``S = H + P + R``
where ``R`` contains residual components not included in ``H`` or ``P``.
This implementation is based upon the algorithm described by [#]_ and [#]_.
.. [#] Fitzgerald, Derry.
"Harmonic/percussive separation using median filtering."
13th International Conference on Digital Audio Effects (DAFX10),
Graz, Austria, 2010.
.. [#] Driedger, Müller, Disch.
"Extending harmonic-percussive separation of audio."
15th International Society for Music Information Retrieval Conference (ISMIR 2014),
Taipei, Taiwan, 2014.
Parameters
----------
S : np.ndarray [shape=(..., d, n)]
input spectrogram. May be real (magnitude) or complex.
Multi-channel is supported.
kernel_size : int or tuple (kernel_harmonic, kernel_percussive)
kernel size(s) for the median filters.
- If scalar, the same size is used for both harmonic and percussive.
- If tuple, the first value specifies the width of the
harmonic filter, and the second value specifies the width
of the percussive filter.
power : float > 0 [scalar]
Exponent for the Wiener filter when constructing soft mask matrices.
mask : bool
Return the masking matrices instead of components.
Masking matrices contain non-negative real values that
can be used to measure the assignment of energy from ``S``
into harmonic or percussive components.
Components can be recovered by multiplying ``S * mask_H``
or ``S * mask_P``.
margin : float or tuple (margin_harmonic, margin_percussive)
margin size(s) for the masks (as described in [2]_)
- If scalar, the same size is used for both harmonic and percussive.
- If tuple, the first value specifies the margin of the
harmonic mask, and the second value specifies the margin
of the percussive mask.
Returns
-------
harmonic : np.ndarray [shape=(..., d, n)]
harmonic component (or mask)
percussive : np.ndarray [shape=(..., d, n)]
percussive component (or mask)
See Also
--------
librosa.util.softmask
Notes
-----
This function caches at level 30.
Examples
--------
Separate into harmonic and percussive
>>> y, sr = librosa.load(librosa.ex('choice'), duration=5)
>>> D = librosa.stft(y)
>>> H, P = librosa.decompose.hpss(D)
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(nrows=3, sharex=True, sharey=True)
>>> img = librosa.display.specshow(librosa.amplitude_to_db(np.abs(D),
... ref=np.max),
... y_axis='log', x_axis='time', ax=ax[0])
>>> ax[0].set(title='Full power spectrogram')
>>> ax[0].label_outer()
>>> librosa.display.specshow(librosa.amplitude_to_db(np.abs(H),
... ref=np.max(np.abs(D))),
... y_axis='log', x_axis='time', ax=ax[1])
>>> ax[1].set(title='Harmonic power spectrogram')
>>> ax[1].label_outer()
>>> librosa.display.specshow(librosa.amplitude_to_db(np.abs(P),
... ref=np.max(np.abs(D))),
... y_axis='log', x_axis='time', ax=ax[2])
>>> ax[2].set(title='Percussive power spectrogram')
>>> fig.colorbar(img, ax=ax, format='%+2.0f dB')
Or with a narrower horizontal filter
>>> H, P = librosa.decompose.hpss(D, kernel_size=(13, 31))
Just get harmonic/percussive masks, not the spectra
>>> mask_H, mask_P = librosa.decompose.hpss(D, mask=True)
>>> mask_H
array([[1.853e-03, 1.701e-04, ..., 9.922e-01, 1.000e+00],
[2.316e-03, 2.127e-04, ..., 9.989e-01, 1.000e+00],
...,
[8.195e-05, 6.939e-05, ..., 3.105e-04, 4.231e-04],
[3.159e-05, 4.156e-05, ..., 6.216e-04, 6.188e-04]],
dtype=float32)
>>> mask_P
array([[9.981e-01, 9.998e-01, ..., 7.759e-03, 3.201e-05],
[9.977e-01, 9.998e-01, ..., 1.122e-03, 4.451e-06],
...,
[9.999e-01, 9.999e-01, ..., 9.997e-01, 9.996e-01],
[1.000e+00, 1.000e+00, ..., 9.994e-01, 9.994e-01]],
dtype=float32)
Separate into harmonic/percussive/residual components by using a margin > 1.0
>>> H, P = librosa.decompose.hpss(D, margin=3.0)
>>> R = D - (H+P)
>>> y_harm = librosa.istft(H)
>>> y_perc = librosa.istft(P)
>>> y_resi = librosa.istft(R)
Get a more isolated percussive component by widening its margin
>>> H, P = librosa.decompose.hpss(D, margin=(1.0,5.0))
"""
if np.iscomplexobj(S):
S, phase = core.magphase(S)
else:
phase = 1
if np.isscalar(kernel_size):
win_harm = kernel_size
win_perc = kernel_size
else:
win_harm = kernel_size[0]
win_perc = kernel_size[1]
if np.isscalar(margin):
margin_harm = margin
margin_perc = margin
else:
margin_harm = margin[0]
margin_perc = margin[1]
# margin minimum is 1.0
if margin_harm < 1 or margin_perc < 1:
raise ParameterError(
"Margins must be >= 1.0. " "A typical range is between 1 and 10."
)
# shape for kernels
harm_shape = [1 for _ in S.shape]
harm_shape[-1] = win_harm
perc_shape = [1 for _ in S.shape]
perc_shape[-2] = win_perc
# Compute median filters. Pre-allocation here preserves memory layout.
harm = np.empty_like(S)
harm[:] = median_filter(S, size=harm_shape, mode="reflect")
perc = np.empty_like(S)
perc[:] = median_filter(S, size=perc_shape, mode="reflect")
split_zeros = margin_harm == 1 and margin_perc == 1
mask_harm = util.softmask(
harm, perc * margin_harm, power=power, split_zeros=split_zeros
)
mask_perc = util.softmask(
perc, harm * margin_perc, power=power, split_zeros=split_zeros
)
if mask:
return mask_harm, mask_perc
return ((S * mask_harm) * phase, (S * mask_perc) * phase)
@cache(level=30)
@deprecate_positional_args
def nn_filter(S, *, rec=None, aggregate=None, axis=-1, **kwargs):
"""Filtering by nearest-neighbors.
Each data point (e.g, spectrogram column) is replaced
by aggregating its nearest neighbors in feature space.
This can be useful for de-noising a spectrogram or feature matrix.
The non-local means method [#]_ can be recovered by providing a
weighted recurrence matrix as input and specifying ``aggregate=np.average``.
Similarly, setting ``aggregate=np.median`` produces sparse de-noising
as in REPET-SIM [#]_.
.. [#] Buades, A., Coll, B., & Morel, J. M.
(2005, June). A non-local algorithm for image denoising.
In Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on (Vol. 2, pp. 60-65). IEEE.
.. [#] Rafii, Z., & Pardo, B.
(2012, October). "Music/Voice Separation Using the Similarity Matrix."
International Society for Music Information Retrieval Conference, 2012.
Parameters
----------
S : np.ndarray
The input data (spectrogram) to filter. Multi-channel is supported.
rec : (optional) scipy.sparse.spmatrix or np.ndarray
Optionally, a pre-computed nearest-neighbor matrix
as provided by `librosa.segment.recurrence_matrix`
aggregate : function
aggregation function (default: `np.mean`)
If ``aggregate=np.average``, then a weighted average is
computed according to the (per-row) weights in ``rec``.
For all other aggregation functions, all neighbors
are treated equally.
axis : int
The axis along which to filter (by default, columns)
**kwargs
Additional keyword arguments provided to
`librosa.segment.recurrence_matrix` if ``rec`` is not provided
Returns
-------
S_filtered : np.ndarray
The filtered data, with shape equivalent to the input ``S``.
Raises
------
ParameterError
if ``rec`` is provided and its shape is incompatible with ``S``.
See Also
--------
decompose
hpss
librosa.segment.recurrence_matrix
Notes
-----
This function caches at level 30.
Examples
--------
De-noise a chromagram by non-local median filtering.
By default this would use euclidean distance to select neighbors,
but this can be overridden directly by setting the ``metric`` parameter.
>>> y, sr = librosa.load(librosa.ex('brahms'),
... offset=30, duration=10)
>>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
>>> chroma_med = librosa.decompose.nn_filter(chroma,
... aggregate=np.median,
... metric='cosine')
To use non-local means, provide an affinity matrix and ``aggregate=np.average``.
>>> rec = librosa.segment.recurrence_matrix(chroma, mode='affinity',
... metric='cosine', sparse=True)
>>> chroma_nlm = librosa.decompose.nn_filter(chroma, rec=rec,
... aggregate=np.average)
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(nrows=5, sharex=True, sharey=True, figsize=(10, 10))
>>> librosa.display.specshow(chroma, y_axis='chroma', x_axis='time', ax=ax[0])
>>> ax[0].set(title='Unfiltered')
>>> ax[0].label_outer()
>>> librosa.display.specshow(chroma_med, y_axis='chroma', x_axis='time', ax=ax[1])
>>> ax[1].set(title='Median-filtered')
>>> ax[1].label_outer()
>>> imgc = librosa.display.specshow(chroma_nlm, y_axis='chroma', x_axis='time', ax=ax[2])
>>> ax[2].set(title='Non-local means')
>>> ax[2].label_outer()
>>> imgr1 = librosa.display.specshow(chroma - chroma_med,
... y_axis='chroma', x_axis='time', ax=ax[3])
>>> ax[3].set(title='Original - median')
>>> ax[3].label_outer()
>>> imgr2 = librosa.display.specshow(chroma - chroma_nlm,
... y_axis='chroma', x_axis='time', ax=ax[4])
>>> ax[4].label_outer()
>>> ax[4].set(title='Original - NLM')
>>> fig.colorbar(imgc, ax=ax[:3])
>>> fig.colorbar(imgr1, ax=[ax[3]])
>>> fig.colorbar(imgr2, ax=[ax[4]])
"""
if aggregate is None:
aggregate = np.mean
if rec is None:
kwargs = dict(kwargs)
kwargs["sparse"] = True
rec = segment.recurrence_matrix(S, axis=axis, **kwargs)
elif not scipy.sparse.issparse(rec):
rec = scipy.sparse.csc_matrix(rec)
if rec.shape[0] != S.shape[axis] or rec.shape[0] != rec.shape[1]:
raise ParameterError(
"Invalid self-similarity matrix shape "
"rec.shape={} for S.shape={}".format(rec.shape, S.shape)
)
return __nn_filter_helper(
rec.data, rec.indices, rec.indptr, S.swapaxes(0, axis), aggregate
).swapaxes(0, axis)
def __nn_filter_helper(R_data, R_indices, R_ptr, S, aggregate):
"""Nearest-neighbor filter helper function.
This is an internal function, not for use outside of the decompose module.
It applies the nearest-neighbor filter to S, assuming that the first index
corresponds to observations.
Parameters
----------
R_data, R_indices, R_ptr : np.ndarrays
The ``data``, ``indices``, and ``indptr`` of a scipy.sparse matrix
S : np.ndarray
The observation data to filter
aggregate : callable
The aggregation operator
Returns
-------
S_out : np.ndarray like S
The filtered data array
"""
s_out = np.empty_like(S)
for i in range(len(R_ptr) - 1):
# Get the non-zeros out of the recurrence matrix
targets = R_indices[R_ptr[i] : R_ptr[i + 1]]
if not len(targets):
s_out[i] = S[i]
continue
neighbors = np.take(S, targets, axis=0)
if aggregate is np.average:
weights = R_data[R_ptr[i] : R_ptr[i + 1]]
s_out[i] = aggregate(neighbors, axis=0, weights=weights)
else:
s_out[i] = aggregate(neighbors, axis=0)
return s_out
|