File size: 19,708 Bytes
9dd3461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Spectrogram decomposition
=========================
.. autosummary::
    :toctree: generated/

    decompose
    hpss
    nn_filter
"""

import numpy as np

import scipy.sparse
from scipy.ndimage import median_filter

import sklearn.decomposition

from . import core
from ._cache import cache
from . import segment
from . import util
from .util.exceptions import ParameterError
from .util.decorators import deprecate_positional_args

__all__ = ["decompose", "hpss", "nn_filter"]


@deprecate_positional_args
def decompose(
    S, *, n_components=None, transformer=None, sort=False, fit=True, **kwargs
):
    """Decompose a feature matrix.

    Given a spectrogram ``S``, produce a decomposition into ``components``
    and ``activations`` such that ``S ~= components.dot(activations)``.

    By default, this is done with with non-negative matrix factorization (NMF),
    but any `sklearn.decomposition`-type object will work.

    Parameters
    ----------
    S : np.ndarray [shape=(..., n_features, n_samples), dtype=float]
        The input feature matrix (e.g., magnitude spectrogram)

        If the input has multiple channels (leading dimensions), they will be automatically
        flattened prior to decomposition.

        If the input is multi-channel, channels and features are automatically flattened into
        a single axis before the decomposition.
        For example, a stereo input `S` with shape `(2, n_features, n_samples)` is
        automatically reshaped to `(2 * n_features, n_samples)`.

    n_components : int > 0 [scalar] or None
        number of desired components

        if None, then ``n_features`` components are used

    transformer : None or object
        If None, use `sklearn.decomposition.NMF`

        Otherwise, any object with a similar interface to NMF should work.
        ``transformer`` must follow the scikit-learn convention, where
        input data is ``(n_samples, n_features)``.

        `transformer.fit_transform()` will be run on ``S.T`` (not ``S``),
        the return value of which is stored (transposed) as ``activations``

        The components will be retrieved as ``transformer.components_.T``::

            S ~= np.dot(activations, transformer.components_).T

        or equivalently::

            S ~= np.dot(transformer.components_.T, activations.T)

    sort : bool
        If ``True``, components are sorted by ascending peak frequency.

        .. note:: If used with ``transformer``, sorting is applied to copies
            of the decomposition parameters, and not to ``transformer``
            internal parameters.

        .. warning:: If the input array has more than two dimensions
            (e.g., if it's a multi-channel spectrogram), then axis sorting
            is not supported and a `ParameterError` exception is raised.

    fit : bool
        If `True`, components are estimated from the input ``S``.

        If `False`, components are assumed to be pre-computed and stored
        in ``transformer``, and are not changed.

    **kwargs : Additional keyword arguments to the default transformer
        `sklearn.decomposition.NMF`

    Returns
    -------
    components: np.ndarray [shape=(..., n_features, n_components)]
        matrix of components (basis elements).
    activations: np.ndarray [shape=(n_components, n_samples)]
        transformed matrix/activation matrix

    Raises
    ------
    ParameterError
        if ``fit`` is False and no ``transformer`` object is provided.

        if the input array is multi-channel and ``sort=True`` is specified.

    See Also
    --------
    sklearn.decomposition : SciKit-Learn matrix decomposition modules

    Examples
    --------
    Decompose a magnitude spectrogram into 16 components with NMF

    >>> y, sr = librosa.load(librosa.ex('pistachio'), duration=5)
    >>> S = np.abs(librosa.stft(y))
    >>> comps, acts = librosa.decompose.decompose(S, n_components=16)

    Sort components by ascending peak frequency

    >>> comps, acts = librosa.decompose.decompose(S, n_components=16,
    ...                                           sort=True)

    Or with sparse dictionary learning

    >>> import sklearn.decomposition
    >>> T = sklearn.decomposition.MiniBatchDictionaryLearning(n_components=16)
    >>> scomps, sacts = librosa.decompose.decompose(S, transformer=T, sort=True)

    >>> import matplotlib.pyplot as plt
    >>> layout = [list(".AAAA"), list("BCCCC"), list(".DDDD")]
    >>> fig, ax = plt.subplot_mosaic(layout, constrained_layout=True)
    >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max),
    ...                          y_axis='log', x_axis='time', ax=ax['A'])
    >>> ax['A'].set(title='Input spectrogram')
    >>> ax['A'].label_outer()
    >>> librosa.display.specshow(librosa.amplitude_to_db(comps,
    >>>                                                  ref=np.max),
    >>>                          y_axis='log', ax=ax['B'])
    >>> ax['B'].set(title='Components')
    >>> ax['B'].label_outer()
    >>> ax['B'].sharey(ax['A'])
    >>> librosa.display.specshow(acts, x_axis='time', ax=ax['C'], cmap='gray_r')
    >>> ax['C'].set(ylabel='Components', title='Activations')
    >>> ax['C'].sharex(ax['A'])
    >>> ax['C'].label_outer()
    >>> S_approx = comps.dot(acts)
    >>> img = librosa.display.specshow(librosa.amplitude_to_db(S_approx,
    >>>                                                        ref=np.max),
    >>>                                y_axis='log', x_axis='time', ax=ax['D'])
    >>> ax['D'].set(title='Reconstructed spectrogram')
    >>> ax['D'].sharex(ax['A'])
    >>> ax['D'].sharey(ax['A'])
    >>> ax['D'].label_outer()
    >>> fig.colorbar(img, ax=list(ax.values()), format="%+2.f dB")
    """

    # Do a swapaxes and unroll
    orig_shape = list(S.shape)

    if S.ndim > 2 and sort:
        raise ParameterError(
            "Parameter sort=True is unsupported for input with more than two dimensions"
        )

    # Transpose S and unroll feature dimensions
    # Use order='F' here to preserve the temporal ordering
    S = S.T.reshape((S.shape[-1], -1), order="F")

    if n_components is None:
        n_components = S.shape[-1]

    if transformer is None:
        if fit is False:
            raise ParameterError("fit must be True if transformer is None")

        transformer = sklearn.decomposition.NMF(n_components=n_components, **kwargs)

    if fit:
        activations = transformer.fit_transform(S).T
    else:
        activations = transformer.transform(S).T

    components = transformer.components_
    component_shape = orig_shape[:-1] + [-1]
    # use order='F' here to preserve component ordering
    components = components.reshape(component_shape[::-1], order="F").T

    if sort:
        components, idx = util.axis_sort(components, index=True)
        activations = activations[idx]

    return components, activations


@cache(level=30)
@deprecate_positional_args
def hpss(S, *, kernel_size=31, power=2.0, mask=False, margin=1.0):
    """Median-filtering harmonic percussive source separation (HPSS).

    If ``margin = 1.0``, decomposes an input spectrogram ``S = H + P``
    where ``H`` contains the harmonic components,
    and ``P`` contains the percussive components.

    If ``margin > 1.0``, decomposes an input spectrogram ``S = H + P + R``
    where ``R`` contains residual components not included in ``H`` or ``P``.

    This implementation is based upon the algorithm described by [#]_ and [#]_.

    .. [#] Fitzgerald, Derry.
        "Harmonic/percussive separation using median filtering."
        13th International Conference on Digital Audio Effects (DAFX10),
        Graz, Austria, 2010.

    .. [#] Driedger, Müller, Disch.
        "Extending harmonic-percussive separation of audio."
        15th International Society for Music Information Retrieval Conference (ISMIR 2014),
        Taipei, Taiwan, 2014.

    Parameters
    ----------
    S : np.ndarray [shape=(..., d, n)]
        input spectrogram. May be real (magnitude) or complex.
        Multi-channel is supported.

    kernel_size : int or tuple (kernel_harmonic, kernel_percussive)
        kernel size(s) for the median filters.

        - If scalar, the same size is used for both harmonic and percussive.
        - If tuple, the first value specifies the width of the
          harmonic filter, and the second value specifies the width
          of the percussive filter.

    power : float > 0 [scalar]
        Exponent for the Wiener filter when constructing soft mask matrices.

    mask : bool
        Return the masking matrices instead of components.

        Masking matrices contain non-negative real values that
        can be used to measure the assignment of energy from ``S``
        into harmonic or percussive components.

        Components can be recovered by multiplying ``S * mask_H``
        or ``S * mask_P``.

    margin : float or tuple (margin_harmonic, margin_percussive)
        margin size(s) for the masks (as described in [2]_)

        - If scalar, the same size is used for both harmonic and percussive.
        - If tuple, the first value specifies the margin of the
          harmonic mask, and the second value specifies the margin
          of the percussive mask.

    Returns
    -------
    harmonic : np.ndarray [shape=(..., d, n)]
        harmonic component (or mask)
    percussive : np.ndarray [shape=(..., d, n)]
        percussive component (or mask)

    See Also
    --------
    librosa.util.softmask

    Notes
    -----
    This function caches at level 30.

    Examples
    --------
    Separate into harmonic and percussive

    >>> y, sr = librosa.load(librosa.ex('choice'), duration=5)
    >>> D = librosa.stft(y)
    >>> H, P = librosa.decompose.hpss(D)

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=3, sharex=True, sharey=True)
    >>> img = librosa.display.specshow(librosa.amplitude_to_db(np.abs(D),
    ...                                                        ref=np.max),
    ...                          y_axis='log', x_axis='time', ax=ax[0])
    >>> ax[0].set(title='Full power spectrogram')
    >>> ax[0].label_outer()
    >>> librosa.display.specshow(librosa.amplitude_to_db(np.abs(H),
    ...                                                  ref=np.max(np.abs(D))),
    ...                          y_axis='log', x_axis='time', ax=ax[1])
    >>> ax[1].set(title='Harmonic power spectrogram')
    >>> ax[1].label_outer()
    >>> librosa.display.specshow(librosa.amplitude_to_db(np.abs(P),
    ...                                                  ref=np.max(np.abs(D))),
    ...                          y_axis='log', x_axis='time', ax=ax[2])
    >>> ax[2].set(title='Percussive power spectrogram')
    >>> fig.colorbar(img, ax=ax, format='%+2.0f dB')

    Or with a narrower horizontal filter

    >>> H, P = librosa.decompose.hpss(D, kernel_size=(13, 31))

    Just get harmonic/percussive masks, not the spectra

    >>> mask_H, mask_P = librosa.decompose.hpss(D, mask=True)
    >>> mask_H
    array([[1.853e-03, 1.701e-04, ..., 9.922e-01, 1.000e+00],
           [2.316e-03, 2.127e-04, ..., 9.989e-01, 1.000e+00],
           ...,
           [8.195e-05, 6.939e-05, ..., 3.105e-04, 4.231e-04],
           [3.159e-05, 4.156e-05, ..., 6.216e-04, 6.188e-04]],
          dtype=float32)
    >>> mask_P
    array([[9.981e-01, 9.998e-01, ..., 7.759e-03, 3.201e-05],
           [9.977e-01, 9.998e-01, ..., 1.122e-03, 4.451e-06],
           ...,
           [9.999e-01, 9.999e-01, ..., 9.997e-01, 9.996e-01],
           [1.000e+00, 1.000e+00, ..., 9.994e-01, 9.994e-01]],
          dtype=float32)

    Separate into harmonic/percussive/residual components by using a margin > 1.0

    >>> H, P = librosa.decompose.hpss(D, margin=3.0)
    >>> R = D - (H+P)
    >>> y_harm = librosa.istft(H)
    >>> y_perc = librosa.istft(P)
    >>> y_resi = librosa.istft(R)

    Get a more isolated percussive component by widening its margin

    >>> H, P = librosa.decompose.hpss(D, margin=(1.0,5.0))

    """

    if np.iscomplexobj(S):
        S, phase = core.magphase(S)
    else:
        phase = 1

    if np.isscalar(kernel_size):
        win_harm = kernel_size
        win_perc = kernel_size
    else:
        win_harm = kernel_size[0]
        win_perc = kernel_size[1]

    if np.isscalar(margin):
        margin_harm = margin
        margin_perc = margin
    else:
        margin_harm = margin[0]
        margin_perc = margin[1]

    # margin minimum is 1.0
    if margin_harm < 1 or margin_perc < 1:
        raise ParameterError(
            "Margins must be >= 1.0. " "A typical range is between 1 and 10."
        )

    # shape for kernels
    harm_shape = [1 for _ in S.shape]
    harm_shape[-1] = win_harm

    perc_shape = [1 for _ in S.shape]
    perc_shape[-2] = win_perc

    # Compute median filters. Pre-allocation here preserves memory layout.
    harm = np.empty_like(S)
    harm[:] = median_filter(S, size=harm_shape, mode="reflect")

    perc = np.empty_like(S)
    perc[:] = median_filter(S, size=perc_shape, mode="reflect")

    split_zeros = margin_harm == 1 and margin_perc == 1

    mask_harm = util.softmask(
        harm, perc * margin_harm, power=power, split_zeros=split_zeros
    )

    mask_perc = util.softmask(
        perc, harm * margin_perc, power=power, split_zeros=split_zeros
    )

    if mask:
        return mask_harm, mask_perc

    return ((S * mask_harm) * phase, (S * mask_perc) * phase)


@cache(level=30)
@deprecate_positional_args
def nn_filter(S, *, rec=None, aggregate=None, axis=-1, **kwargs):
    """Filtering by nearest-neighbors.

    Each data point (e.g, spectrogram column) is replaced
    by aggregating its nearest neighbors in feature space.

    This can be useful for de-noising a spectrogram or feature matrix.

    The non-local means method [#]_ can be recovered by providing a
    weighted recurrence matrix as input and specifying ``aggregate=np.average``.

    Similarly, setting ``aggregate=np.median`` produces sparse de-noising
    as in REPET-SIM [#]_.

    .. [#] Buades, A., Coll, B., & Morel, J. M.
        (2005, June). A non-local algorithm for image denoising.
        In Computer Vision and Pattern Recognition, 2005.
        CVPR 2005. IEEE Computer Society Conference on (Vol. 2, pp. 60-65). IEEE.

    .. [#] Rafii, Z., & Pardo, B.
        (2012, October).  "Music/Voice Separation Using the Similarity Matrix."
        International Society for Music Information Retrieval Conference, 2012.

    Parameters
    ----------
    S : np.ndarray
        The input data (spectrogram) to filter. Multi-channel is supported.

    rec : (optional) scipy.sparse.spmatrix or np.ndarray
        Optionally, a pre-computed nearest-neighbor matrix
        as provided by `librosa.segment.recurrence_matrix`

    aggregate : function
        aggregation function (default: `np.mean`)

        If ``aggregate=np.average``, then a weighted average is
        computed according to the (per-row) weights in ``rec``.

        For all other aggregation functions, all neighbors
        are treated equally.

    axis : int
        The axis along which to filter (by default, columns)

    **kwargs
        Additional keyword arguments provided to
        `librosa.segment.recurrence_matrix` if ``rec`` is not provided

    Returns
    -------
    S_filtered : np.ndarray
        The filtered data, with shape equivalent to the input ``S``.

    Raises
    ------
    ParameterError
        if ``rec`` is provided and its shape is incompatible with ``S``.

    See Also
    --------
    decompose
    hpss
    librosa.segment.recurrence_matrix

    Notes
    -----
    This function caches at level 30.

    Examples
    --------
    De-noise a chromagram by non-local median filtering.
    By default this would use euclidean distance to select neighbors,
    but this can be overridden directly by setting the ``metric`` parameter.

    >>> y, sr = librosa.load(librosa.ex('brahms'),
    ...                      offset=30, duration=10)
    >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
    >>> chroma_med = librosa.decompose.nn_filter(chroma,
    ...                                          aggregate=np.median,
    ...                                          metric='cosine')

    To use non-local means, provide an affinity matrix and ``aggregate=np.average``.

    >>> rec = librosa.segment.recurrence_matrix(chroma, mode='affinity',
    ...                                         metric='cosine', sparse=True)
    >>> chroma_nlm = librosa.decompose.nn_filter(chroma, rec=rec,
    ...                                          aggregate=np.average)

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=5, sharex=True, sharey=True, figsize=(10, 10))
    >>> librosa.display.specshow(chroma, y_axis='chroma', x_axis='time', ax=ax[0])
    >>> ax[0].set(title='Unfiltered')
    >>> ax[0].label_outer()
    >>> librosa.display.specshow(chroma_med, y_axis='chroma', x_axis='time', ax=ax[1])
    >>> ax[1].set(title='Median-filtered')
    >>> ax[1].label_outer()
    >>> imgc = librosa.display.specshow(chroma_nlm, y_axis='chroma', x_axis='time', ax=ax[2])
    >>> ax[2].set(title='Non-local means')
    >>> ax[2].label_outer()
    >>> imgr1 = librosa.display.specshow(chroma - chroma_med,
    ...                          y_axis='chroma', x_axis='time', ax=ax[3])
    >>> ax[3].set(title='Original - median')
    >>> ax[3].label_outer()
    >>> imgr2 = librosa.display.specshow(chroma - chroma_nlm,
    ...                          y_axis='chroma', x_axis='time', ax=ax[4])
    >>> ax[4].label_outer()
    >>> ax[4].set(title='Original - NLM')
    >>> fig.colorbar(imgc, ax=ax[:3])
    >>> fig.colorbar(imgr1, ax=[ax[3]])
    >>> fig.colorbar(imgr2, ax=[ax[4]])
    """

    if aggregate is None:
        aggregate = np.mean

    if rec is None:
        kwargs = dict(kwargs)
        kwargs["sparse"] = True
        rec = segment.recurrence_matrix(S, axis=axis, **kwargs)
    elif not scipy.sparse.issparse(rec):
        rec = scipy.sparse.csc_matrix(rec)

    if rec.shape[0] != S.shape[axis] or rec.shape[0] != rec.shape[1]:
        raise ParameterError(
            "Invalid self-similarity matrix shape "
            "rec.shape={} for S.shape={}".format(rec.shape, S.shape)
        )

    return __nn_filter_helper(
        rec.data, rec.indices, rec.indptr, S.swapaxes(0, axis), aggregate
    ).swapaxes(0, axis)


def __nn_filter_helper(R_data, R_indices, R_ptr, S, aggregate):
    """Nearest-neighbor filter helper function.

    This is an internal function, not for use outside of the decompose module.

    It applies the nearest-neighbor filter to S, assuming that the first index
    corresponds to observations.

    Parameters
    ----------
    R_data, R_indices, R_ptr : np.ndarrays
        The ``data``, ``indices``, and ``indptr`` of a scipy.sparse matrix
    S : np.ndarray
        The observation data to filter
    aggregate : callable
        The aggregation operator

    Returns
    -------
    S_out : np.ndarray like S
        The filtered data array
    """
    s_out = np.empty_like(S)

    for i in range(len(R_ptr) - 1):

        # Get the non-zeros out of the recurrence matrix
        targets = R_indices[R_ptr[i] : R_ptr[i + 1]]

        if not len(targets):
            s_out[i] = S[i]
            continue

        neighbors = np.take(S, targets, axis=0)

        if aggregate is np.average:
            weights = R_data[R_ptr[i] : R_ptr[i + 1]]
            s_out[i] = aggregate(neighbors, axis=0, weights=weights)
        else:
            s_out[i] = aggregate(neighbors, axis=0)

    return s_out