File size: 23,605 Bytes
9dd3461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Beat and tempo
==============
.. autosummary::
   :toctree: generated/

   beat_track
   plp
   tempo
"""

import numpy as np
import scipy
import scipy.stats

from ._cache import cache
from . import core
from . import onset
from . import util
from .feature import tempogram, fourier_tempogram
from .util.exceptions import ParameterError
from .util.decorators import deprecate_positional_args

__all__ = ["beat_track", "tempo", "plp"]


@deprecate_positional_args
def beat_track(
    *,
    y=None,
    sr=22050,
    onset_envelope=None,
    hop_length=512,
    start_bpm=120.0,
    tightness=100,
    trim=True,
    bpm=None,
    prior=None,
    units="frames",
):
    r"""Dynamic programming beat tracker.

    Beats are detected in three stages, following the method of [#]_:

      1. Measure onset strength
      2. Estimate tempo from onset correlation
      3. Pick peaks in onset strength approximately consistent with estimated
         tempo

    .. [#] Ellis, Daniel PW. "Beat tracking by dynamic programming."
           Journal of New Music Research 36.1 (2007): 51-60.
           http://labrosa.ee.columbia.edu/projects/beattrack/

    Parameters
    ----------
    y : np.ndarray [shape=(n,)] or None
        audio time series
    sr : number > 0 [scalar]
        sampling rate of ``y``
    onset_envelope : np.ndarray [shape=(n,)] or None
        (optional) pre-computed onset strength envelope.
    hop_length : int > 0 [scalar]
        number of audio samples between successive ``onset_envelope`` values
    start_bpm : float > 0 [scalar]
        initial guess for the tempo estimator (in beats per minute)
    tightness : float [scalar]
        tightness of beat distribution around tempo
    trim : bool [scalar]
        trim leading/trailing beats with weak onsets
    bpm : float [scalar]
        (optional) If provided, use ``bpm`` as the tempo instead of
        estimating it from ``onsets``.
    prior : scipy.stats.rv_continuous [optional]
        An optional prior distribution over tempo.
        If provided, ``start_bpm`` will be ignored.
    units : {'frames', 'samples', 'time'}
        The units to encode detected beat events in.
        By default, 'frames' are used.

    Returns
    -------
    tempo : float [scalar, non-negative]
        estimated global tempo (in beats per minute)
    beats : np.ndarray [shape=(m,)]
        estimated beat event locations in the specified units
        (default is frame indices)
    .. note::
        If no onset strength could be detected, beat_tracker estimates 0 BPM
        and returns an empty list.

    Raises
    ------
    ParameterError
        if neither ``y`` nor ``onset_envelope`` are provided,
        or if ``units`` is not one of 'frames', 'samples', or 'time'

    See Also
    --------
    librosa.onset.onset_strength

    Examples
    --------
    Track beats using time series input

    >>> y, sr = librosa.load(librosa.ex('choice'), duration=10)

    >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr)
    >>> tempo
    135.99917763157896

    Print the frames corresponding to beats

    >>> beats
    array([  3,  21,  40,  59,  78,  96, 116, 135, 154, 173, 192, 211,
           230, 249, 268, 287, 306, 325, 344, 363])

    Or print them as timestamps

    >>> librosa.frames_to_time(beats, sr=sr)
    array([0.07 , 0.488, 0.929, 1.37 , 1.811, 2.229, 2.694, 3.135,
           3.576, 4.017, 4.458, 4.899, 5.341, 5.782, 6.223, 6.664,
           7.105, 7.546, 7.988, 8.429])

    Track beats using a pre-computed onset envelope

    >>> onset_env = librosa.onset.onset_strength(y=y, sr=sr,
    ...                                          aggregate=np.median)
    >>> tempo, beats = librosa.beat.beat_track(onset_envelope=onset_env,
    ...                                        sr=sr)
    >>> tempo
    135.99917763157896
    >>> beats
    array([  3,  21,  40,  59,  78,  96, 116, 135, 154, 173, 192, 211,
           230, 249, 268, 287, 306, 325, 344, 363])

    Plot the beat events against the onset strength envelope

    >>> import matplotlib.pyplot as plt
    >>> hop_length = 512
    >>> fig, ax = plt.subplots(nrows=2, sharex=True)
    >>> times = librosa.times_like(onset_env, sr=sr, hop_length=hop_length)
    >>> M = librosa.feature.melspectrogram(y=y, sr=sr, hop_length=hop_length)
    >>> librosa.display.specshow(librosa.power_to_db(M, ref=np.max),
    ...                          y_axis='mel', x_axis='time', hop_length=hop_length,
    ...                          ax=ax[0])
    >>> ax[0].label_outer()
    >>> ax[0].set(title='Mel spectrogram')
    >>> ax[1].plot(times, librosa.util.normalize(onset_env),
    ...          label='Onset strength')
    >>> ax[1].vlines(times[beats], 0, 1, alpha=0.5, color='r',
    ...            linestyle='--', label='Beats')
    >>> ax[1].legend()
    """

    # First, get the frame->beat strength profile if we don't already have one
    if onset_envelope is None:
        if y is None:
            raise ParameterError("y or onset_envelope must be provided")

        onset_envelope = onset.onset_strength(
            y=y, sr=sr, hop_length=hop_length, aggregate=np.median
        )

    # Do we have any onsets to grab?
    if not onset_envelope.any():
        return (0, np.array([], dtype=int))

    # Estimate BPM if one was not provided
    if bpm is None:
        bpm = tempo(
            onset_envelope=onset_envelope,
            sr=sr,
            hop_length=hop_length,
            start_bpm=start_bpm,
            prior=prior,
        )[0]

    # Then, run the tracker
    beats = __beat_tracker(onset_envelope, bpm, float(sr) / hop_length, tightness, trim)

    if units == "frames":
        pass
    elif units == "samples":
        beats = core.frames_to_samples(beats, hop_length=hop_length)
    elif units == "time":
        beats = core.frames_to_time(beats, hop_length=hop_length, sr=sr)
    else:
        raise ParameterError("Invalid unit type: {}".format(units))

    return (bpm, beats)


@cache(level=30)
@deprecate_positional_args
def tempo(
    *,
    y=None,
    sr=22050,
    onset_envelope=None,
    hop_length=512,
    start_bpm=120,
    std_bpm=1.0,
    ac_size=8.0,
    max_tempo=320.0,
    aggregate=np.mean,
    prior=None,
):
    """Estimate the tempo (beats per minute)

    Parameters
    ----------
    y : np.ndarray [shape=(..., n)] or None
        audio time series. Multi-channel is supported.
    sr : number > 0 [scalar]
        sampling rate of the time series
    onset_envelope : np.ndarray [shape=(..., n)]
        pre-computed onset strength envelope
    hop_length : int > 0 [scalar]
        hop length of the time series
    start_bpm : float [scalar]
        initial guess of the BPM
    std_bpm : float > 0 [scalar]
        standard deviation of tempo distribution
    ac_size : float > 0 [scalar]
        length (in seconds) of the auto-correlation window
    max_tempo : float > 0 [scalar, optional]
        If provided, only estimate tempo below this threshold
    aggregate : callable [optional]
        Aggregation function for estimating global tempo.
        If `None`, then tempo is estimated independently for each frame.
    prior : scipy.stats.rv_continuous [optional]
        A prior distribution over tempo (in beats per minute).
        By default, a pseudo-log-normal prior is used.
        If given, ``start_bpm`` and ``std_bpm`` will be ignored.

    Returns
    -------
    tempo : np.ndarray
        estimated tempo (beats per minute).
        If input is multi-channel, one tempo estimate per channel is provided.

    See Also
    --------
    librosa.onset.onset_strength
    librosa.feature.tempogram

    Notes
    -----
    This function caches at level 30.

    Examples
    --------
    >>> # Estimate a static tempo
    >>> y, sr = librosa.load(librosa.ex('nutcracker'), duration=30)
    >>> onset_env = librosa.onset.onset_strength(y=y, sr=sr)
    >>> tempo = librosa.beat.tempo(onset_envelope=onset_env, sr=sr)
    >>> tempo
    array([143.555])

    >>> # Or a static tempo with a uniform prior instead
    >>> import scipy.stats
    >>> prior = scipy.stats.uniform(30, 300)  # uniform over 30-300 BPM
    >>> utempo = librosa.beat.tempo(onset_envelope=onset_env, sr=sr, prior=prior)
    >>> utempo
    array([161.499])

    >>> # Or a dynamic tempo
    >>> dtempo = librosa.beat.tempo(onset_envelope=onset_env, sr=sr,
    ...                             aggregate=None)
    >>> dtempo
    array([ 89.103,  89.103,  89.103, ..., 123.047, 123.047, 123.047])

    >>> # Dynamic tempo with a proper log-normal prior
    >>> prior_lognorm = scipy.stats.lognorm(loc=np.log(120), scale=120, s=1)
    >>> dtempo_lognorm = librosa.beat.tempo(onset_envelope=onset_env, sr=sr,
    ...                                     aggregate=None,
    ...                                     prior=prior_lognorm)
    >>> dtempo_lognorm
    array([ 89.103,  89.103,  89.103, ..., 123.047, 123.047, 123.047])

    Plot the estimated tempo against the onset autocorrelation

    >>> import matplotlib.pyplot as plt
    >>> # Convert to scalar
    >>> tempo = tempo.item()
    >>> utempo = utempo.item()
    >>> # Compute 2-second windowed autocorrelation
    >>> hop_length = 512
    >>> ac = librosa.autocorrelate(onset_env, max_size=2 * sr // hop_length)
    >>> freqs = librosa.tempo_frequencies(len(ac), sr=sr,
    ...                                   hop_length=hop_length)
    >>> # Plot on a BPM axis.  We skip the first (0-lag) bin.
    >>> fig, ax = plt.subplots()
    >>> ax.semilogx(freqs[1:], librosa.util.normalize(ac)[1:],
    ...              label='Onset autocorrelation', base=2)
    >>> ax.axvline(tempo, 0, 1, alpha=0.75, linestyle='--', color='r',
    ...             label='Tempo (default prior): {:.2f} BPM'.format(tempo))
    >>> ax.axvline(utempo, 0, 1, alpha=0.75, linestyle=':', color='g',
    ...             label='Tempo (uniform prior): {:.2f} BPM'.format(utempo))
    >>> ax.set(xlabel='Tempo (BPM)', title='Static tempo estimation')
    >>> ax.grid(True)
    >>> ax.legend()

    Plot dynamic tempo estimates over a tempogram

    >>> fig, ax = plt.subplots()
    >>> tg = librosa.feature.tempogram(onset_envelope=onset_env, sr=sr,
    ...                                hop_length=hop_length)
    >>> librosa.display.specshow(tg, x_axis='time', y_axis='tempo', cmap='magma', ax=ax)
    >>> ax.plot(librosa.times_like(dtempo), dtempo,
    ...          color='c', linewidth=1.5, label='Tempo estimate (default prior)')
    >>> ax.plot(librosa.times_like(dtempo_lognorm), dtempo_lognorm,
    ...          color='c', linewidth=1.5, linestyle='--',
    ...          label='Tempo estimate (lognorm prior)')
    >>> ax.set(title='Dynamic tempo estimation')
    >>> ax.legend()
    """

    if start_bpm <= 0:
        raise ParameterError("start_bpm must be strictly positive")

    win_length = core.time_to_frames(ac_size, sr=sr, hop_length=hop_length).item()

    tg = tempogram(
        y=y,
        sr=sr,
        onset_envelope=onset_envelope,
        hop_length=hop_length,
        win_length=win_length,
    )

    # Eventually, we want this to work for time-varying tempo
    if aggregate is not None:
        tg = aggregate(tg, axis=-1, keepdims=True)

    # Get the BPM values for each bin, skipping the 0-lag bin
    bpms = core.tempo_frequencies(tg.shape[-2], hop_length=hop_length, sr=sr)

    # Weight the autocorrelation by a log-normal distribution
    if prior is None:
        logprior = -0.5 * ((np.log2(bpms) - np.log2(start_bpm)) / std_bpm) ** 2
    else:
        logprior = prior.logpdf(bpms)

    # Kill everything above the max tempo
    if max_tempo is not None:
        max_idx = np.argmax(bpms < max_tempo)
        logprior[:max_idx] = -np.inf
    # explicit axis expansion
    logprior = util.expand_to(logprior, ndim=tg.ndim, axes=-2)

    # Get the maximum, weighted by the prior
    # Using log1p here for numerical stability
    best_period = np.argmax(np.log1p(1e6 * tg) + logprior, axis=-2)

    return np.take(bpms, best_period)


@deprecate_positional_args
def plp(
    *,
    y=None,
    sr=22050,
    onset_envelope=None,
    hop_length=512,
    win_length=384,
    tempo_min=30,
    tempo_max=300,
    prior=None,
):
    """Predominant local pulse (PLP) estimation. [#]_

    The PLP method analyzes the onset strength envelope in the frequency domain
    to find a locally stable tempo for each frame.  These local periodicities
    are used to synthesize local half-waves, which are combined such that peaks
    coincide with rhythmically salient frames (e.g. onset events on a musical time grid).
    The local maxima of the pulse curve can be taken as estimated beat positions.

    This method may be preferred over the dynamic programming method of `beat_track`
    when either the tempo is expected to vary significantly over time.  Additionally,
    since `plp` does not require the entire signal to make predictions, it may be
    preferable when beat-tracking long recordings in a streaming setting.

    .. [#] Grosche, P., & Muller, M. (2011).
        "Extracting predominant local pulse information from music recordings."
        IEEE Transactions on Audio, Speech, and Language Processing, 19(6), 1688-1701.

    Parameters
    ----------
    y : np.ndarray [shape=(..., n)] or None
        audio time series. Multi-channel is supported.

    sr : number > 0 [scalar]
        sampling rate of ``y``

    onset_envelope : np.ndarray [shape=(..., n)] or None
        (optional) pre-computed onset strength envelope

    hop_length : int > 0 [scalar]
        number of audio samples between successive ``onset_envelope`` values

    win_length : int > 0 [scalar]
        number of frames to use for tempogram analysis.
        By default, 384 frames (at ``sr=22050`` and ``hop_length=512``) corresponds
        to about 8.9 seconds.

    tempo_min, tempo_max : numbers > 0 [scalar], optional
        Minimum and maximum permissible tempo values.  ``tempo_max`` must be at least
        ``tempo_min``.

        Set either (or both) to `None` to disable this constraint.

    prior : scipy.stats.rv_continuous [optional]
        A prior distribution over tempo (in beats per minute).
        By default, a uniform prior over ``[tempo_min, tempo_max]`` is used.

    Returns
    -------
    pulse : np.ndarray, shape=[(..., n)]
        The estimated pulse curve.  Maxima correspond to rhythmically salient
        points of time.

        If input is multi-channel, one pulse curve per channel is computed.

    See Also
    --------
    beat_track
    librosa.onset.onset_strength
    librosa.feature.fourier_tempogram

    Examples
    --------
    Visualize the PLP compared to an onset strength envelope.
    Both are normalized here to make comparison easier.

    >>> y, sr = librosa.load(librosa.ex('brahms'))
    >>> onset_env = librosa.onset.onset_strength(y=y, sr=sr)
    >>> pulse = librosa.beat.plp(onset_envelope=onset_env, sr=sr)
    >>> # Or compute pulse with an alternate prior, like log-normal
    >>> import scipy.stats
    >>> prior = scipy.stats.lognorm(loc=np.log(120), scale=120, s=1)
    >>> pulse_lognorm = librosa.beat.plp(onset_envelope=onset_env, sr=sr,
    ...                                  prior=prior)
    >>> melspec = librosa.feature.melspectrogram(y=y, sr=sr)

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=3, sharex=True)
    >>> librosa.display.specshow(librosa.power_to_db(melspec,
    ...                                              ref=np.max),
    ...                          x_axis='time', y_axis='mel', ax=ax[0])
    >>> ax[0].set(title='Mel spectrogram')
    >>> ax[0].label_outer()
    >>> ax[1].plot(librosa.times_like(onset_env),
    ...          librosa.util.normalize(onset_env),
    ...          label='Onset strength')
    >>> ax[1].plot(librosa.times_like(pulse),
    ...          librosa.util.normalize(pulse),
    ...          label='Predominant local pulse (PLP)')
    >>> ax[1].set(title='Uniform tempo prior [30, 300]')
    >>> ax[1].label_outer()
    >>> ax[2].plot(librosa.times_like(onset_env),
    ...          librosa.util.normalize(onset_env),
    ...          label='Onset strength')
    >>> ax[2].plot(librosa.times_like(pulse_lognorm),
    ...          librosa.util.normalize(pulse_lognorm),
    ...          label='Predominant local pulse (PLP)')
    >>> ax[2].set(title='Log-normal tempo prior, mean=120', xlim=[5, 20])
    >>> ax[2].legend()

    PLP local maxima can be used as estimates of beat positions.

    >>> tempo, beats = librosa.beat.beat_track(onset_envelope=onset_env)
    >>> beats_plp = np.flatnonzero(librosa.util.localmax(pulse))
    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True)
    >>> times = librosa.times_like(onset_env, sr=sr)
    >>> ax[0].plot(times, librosa.util.normalize(onset_env),
    ...          label='Onset strength')
    >>> ax[0].vlines(times[beats], 0, 1, alpha=0.5, color='r',
    ...            linestyle='--', label='Beats')
    >>> ax[0].legend()
    >>> ax[0].set(title='librosa.beat.beat_track')
    >>> ax[0].label_outer()
    >>> # Limit the plot to a 15-second window
    >>> times = librosa.times_like(pulse, sr=sr)
    >>> ax[1].plot(times, librosa.util.normalize(pulse),
    ...          label='PLP')
    >>> ax[1].vlines(times[beats_plp], 0, 1, alpha=0.5, color='r',
    ...            linestyle='--', label='PLP Beats')
    >>> ax[1].legend()
    >>> ax[1].set(title='librosa.beat.plp', xlim=[5, 20])
    >>> ax[1].xaxis.set_major_formatter(librosa.display.TimeFormatter())

    """

    # Step 1: get the onset envelope
    if onset_envelope is None:
        onset_envelope = onset.onset_strength(
            y=y, sr=sr, hop_length=hop_length, aggregate=np.median
        )

    if tempo_min is not None and tempo_max is not None and tempo_max <= tempo_min:
        raise ParameterError(
            "tempo_max={} must be larger than tempo_min={}".format(tempo_max, tempo_min)
        )

    # Step 2: get the fourier tempogram
    ftgram = fourier_tempogram(
        onset_envelope=onset_envelope,
        sr=sr,
        hop_length=hop_length,
        win_length=win_length,
    )

    # Step 3: pin to the feasible tempo range
    tempo_frequencies = core.fourier_tempo_frequencies(
        sr=sr, hop_length=hop_length, win_length=win_length
    )

    if tempo_min is not None:
        ftgram[..., tempo_frequencies < tempo_min, :] = 0
    if tempo_max is not None:
        ftgram[..., tempo_frequencies > tempo_max, :] = 0

    # reshape lengths to match dimension properly
    tempo_frequencies = util.expand_to(tempo_frequencies, ndim=ftgram.ndim, axes=-2)

    # Step 3: Discard everything below the peak
    ftmag = np.log1p(1e6 * np.abs(ftgram))
    if prior is not None:
        ftmag += prior.logpdf(tempo_frequencies)

    peak_values = ftmag.max(axis=-2, keepdims=True)
    ftgram[ftmag < peak_values] = 0

    # Normalize to keep only phase information
    ftgram /= util.tiny(ftgram) ** 0.5 + np.abs(ftgram.max(axis=-2, keepdims=True))

    # Step 5: invert the Fourier tempogram to get the pulse
    pulse = core.istft(
        ftgram, hop_length=1, n_fft=win_length, length=onset_envelope.shape[-1]
    )

    # Step 6: retain only the positive part of the pulse cycle
    pulse = np.clip(pulse, 0, None, pulse)

    # Return the normalized pulse
    return util.normalize(pulse, axis=-1)


def __beat_tracker(onset_envelope, bpm, fft_res, tightness, trim):
    """Internal function that tracks beats in an onset strength envelope.

    Parameters
    ----------
    onset_envelope : np.ndarray [shape=(n,)]
        onset strength envelope
    bpm : float [scalar]
        tempo estimate
    fft_res : float [scalar]
        resolution of the fft (sr / hop_length)
    tightness : float [scalar]
        how closely do we adhere to bpm?
    trim : bool [scalar]
        trim leading/trailing beats with weak onsets?

    Returns
    -------
    beats : np.ndarray [shape=(n,)]
        frame numbers of beat events
    """

    if bpm <= 0:
        raise ParameterError("bpm must be strictly positive")

    # convert bpm to a sample period for searching
    period = round(60.0 * fft_res / bpm)

    # localscore is a smoothed version of AGC'd onset envelope
    localscore = __beat_local_score(onset_envelope, period)

    # run the DP
    backlink, cumscore = __beat_track_dp(localscore, period, tightness)

    # get the position of the last beat
    beats = [__last_beat(cumscore)]

    # Reconstruct the beat path from backlinks
    while backlink[beats[-1]] >= 0:
        beats.append(backlink[beats[-1]])

    # Put the beats in ascending order
    # Convert into an array of frame numbers
    beats = np.array(beats[::-1], dtype=int)

    # Discard spurious trailing beats
    beats = __trim_beats(localscore, beats, trim)

    return beats


# -- Helper functions for beat tracking
def __normalize_onsets(onsets):
    """Maps onset strength function into the range [0, 1]"""

    norm = onsets.std(ddof=1)
    if norm > 0:
        onsets = onsets / norm
    return onsets


def __beat_local_score(onset_envelope, period):
    """Construct the local score for an onset envlope and given period"""

    window = np.exp(-0.5 * (np.arange(-period, period + 1) * 32.0 / period) ** 2)
    return scipy.signal.convolve(__normalize_onsets(onset_envelope), window, "same")


def __beat_track_dp(localscore, period, tightness):
    """Core dynamic program for beat tracking"""

    backlink = np.zeros_like(localscore, dtype=int)
    cumscore = np.zeros_like(localscore)

    # Search range for previous beat
    window = np.arange(-2 * period, -np.round(period / 2) + 1, dtype=int)

    # Make a score window, which begins biased toward start_bpm and skewed
    if tightness <= 0:
        raise ParameterError("tightness must be strictly positive")

    txwt = -tightness * (np.log(-window / period) ** 2)

    # Are we on the first beat?
    first_beat = True
    for i, score_i in enumerate(localscore):

        # Are we reaching back before time 0?
        z_pad = np.maximum(0, min(-window[0], len(window)))

        # Search over all possible predecessors
        candidates = txwt.copy()
        candidates[z_pad:] = candidates[z_pad:] + cumscore[window[z_pad:]]

        # Find the best preceding beat
        beat_location = np.argmax(candidates)

        # Add the local score
        cumscore[i] = score_i + candidates[beat_location]

        # Special case the first onset.  Stop if the localscore is small
        if first_beat and score_i < 0.01 * localscore.max():
            backlink[i] = -1
        else:
            backlink[i] = window[beat_location]
            first_beat = False

        # Update the time range
        window = window + 1

    return backlink, cumscore


def __last_beat(cumscore):
    """Get the last beat from the cumulative score array"""

    maxes = util.localmax(cumscore)
    med_score = np.median(cumscore[np.argwhere(maxes)])

    # The last of these is the last beat (since score generally increases)
    return np.argwhere((cumscore * maxes * 2 > med_score)).max()


def __trim_beats(localscore, beats, trim):
    """Final post-processing: throw out spurious leading/trailing beats"""

    smooth_boe = scipy.signal.convolve(localscore[beats], scipy.signal.hann(5), "same")

    if trim:
        threshold = 0.5 * ((smooth_boe ** 2).mean() ** 0.5)
    else:
        threshold = 0.0

    valid = np.argwhere(smooth_boe > threshold)

    return beats[valid.min() : valid.max()]