File size: 19,809 Bytes
9dd3461 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 |
from __future__ import absolute_import, unicode_literals
__version__ = '0.42.1'
__license__ = 'MIT'
import marshal
import re
import tempfile
import threading
import time
from hashlib import md5
from math import log
from . import finalseg
from ._compat import *
if os.name == 'nt':
from shutil import move as _replace_file
else:
_replace_file = os.rename
_get_abs_path = lambda path: os.path.normpath(os.path.join(os.getcwd(), path))
DEFAULT_DICT = None
DEFAULT_DICT_NAME = "dict.txt"
log_console = logging.StreamHandler(sys.stderr)
default_logger = logging.getLogger(__name__)
default_logger.setLevel(logging.DEBUG)
default_logger.addHandler(log_console)
DICT_WRITING = {}
pool = None
re_userdict = re.compile('^(.+?)( [0-9]+)?( [a-z]+)?$', re.U)
re_eng = re.compile('[a-zA-Z0-9]', re.U)
# \u4E00-\u9FD5a-zA-Z0-9+#&\._ : All non-space characters. Will be handled with re_han
# \r\n|\s : whitespace characters. Will not be handled.
# re_han_default = re.compile("([\u4E00-\u9FD5a-zA-Z0-9+#&\._%]+)", re.U)
# Adding "-" symbol in re_han_default
re_han_default = re.compile("([\u4E00-\u9FD5a-zA-Z0-9+#&\._%\-]+)", re.U)
re_skip_default = re.compile("(\r\n|\s)", re.U)
def setLogLevel(log_level):
default_logger.setLevel(log_level)
class Tokenizer(object):
def __init__(self, dictionary=DEFAULT_DICT):
self.lock = threading.RLock()
if dictionary == DEFAULT_DICT:
self.dictionary = dictionary
else:
self.dictionary = _get_abs_path(dictionary)
self.FREQ = {}
self.total = 0
self.user_word_tag_tab = {}
self.initialized = False
self.tmp_dir = None
self.cache_file = None
def __repr__(self):
return '<Tokenizer dictionary=%r>' % self.dictionary
@staticmethod
def gen_pfdict(f):
lfreq = {}
ltotal = 0
f_name = resolve_filename(f)
for lineno, line in enumerate(f, 1):
try:
line = line.strip().decode('utf-8')
word, freq = line.split(' ')[:2]
freq = int(freq)
lfreq[word] = freq
ltotal += freq
for ch in xrange(len(word)):
wfrag = word[:ch + 1]
if wfrag not in lfreq:
lfreq[wfrag] = 0
except ValueError:
raise ValueError(
'invalid dictionary entry in %s at Line %s: %s' % (f_name, lineno, line))
f.close()
return lfreq, ltotal
def initialize(self, dictionary=None):
if dictionary:
abs_path = _get_abs_path(dictionary)
if self.dictionary == abs_path and self.initialized:
return
else:
self.dictionary = abs_path
self.initialized = False
else:
abs_path = self.dictionary
with self.lock:
try:
with DICT_WRITING[abs_path]:
pass
except KeyError:
pass
if self.initialized:
return
default_logger.debug("Building prefix dict from %s ..." % (abs_path or 'the default dictionary'))
t1 = time.time()
if self.cache_file:
cache_file = self.cache_file
# default dictionary
elif abs_path == DEFAULT_DICT:
cache_file = "jieba.cache"
# custom dictionary
else:
cache_file = "jieba.u%s.cache" % md5(
abs_path.encode('utf-8', 'replace')).hexdigest()
cache_file = os.path.join(
self.tmp_dir or tempfile.gettempdir(), cache_file)
# prevent absolute path in self.cache_file
tmpdir = os.path.dirname(cache_file)
load_from_cache_fail = True
if os.path.isfile(cache_file) and (abs_path == DEFAULT_DICT or
os.path.getmtime(cache_file) > os.path.getmtime(abs_path)):
default_logger.debug(
"Loading model from cache %s" % cache_file)
try:
with open(cache_file, 'rb') as cf:
self.FREQ, self.total = marshal.load(cf)
load_from_cache_fail = False
except Exception:
load_from_cache_fail = True
if load_from_cache_fail:
wlock = DICT_WRITING.get(abs_path, threading.RLock())
DICT_WRITING[abs_path] = wlock
with wlock:
self.FREQ, self.total = self.gen_pfdict(self.get_dict_file())
default_logger.debug(
"Dumping model to file cache %s" % cache_file)
try:
# prevent moving across different filesystems
fd, fpath = tempfile.mkstemp(dir=tmpdir)
with os.fdopen(fd, 'wb') as temp_cache_file:
marshal.dump(
(self.FREQ, self.total), temp_cache_file)
_replace_file(fpath, cache_file)
except Exception:
default_logger.exception("Dump cache file failed.")
try:
del DICT_WRITING[abs_path]
except KeyError:
pass
self.initialized = True
default_logger.debug(
"Loading model cost %.3f seconds." % (time.time() - t1))
default_logger.debug("Prefix dict has been built successfully.")
def check_initialized(self):
if not self.initialized:
self.initialize()
def calc(self, sentence, DAG, route):
N = len(sentence)
route[N] = (0, 0)
logtotal = log(self.total)
for idx in xrange(N - 1, -1, -1):
route[idx] = max((log(self.FREQ.get(sentence[idx:x + 1]) or 1) -
logtotal + route[x + 1][0], x) for x in DAG[idx])
def get_DAG(self, sentence):
self.check_initialized()
DAG = {}
N = len(sentence)
for k in xrange(N):
tmplist = []
i = k
frag = sentence[k]
while i < N and frag in self.FREQ:
if self.FREQ[frag]:
tmplist.append(i)
i += 1
frag = sentence[k:i + 1]
if not tmplist:
tmplist.append(k)
DAG[k] = tmplist
return DAG
def __cut_all(self, sentence):
dag = self.get_DAG(sentence)
old_j = -1
eng_scan = 0
eng_buf = u''
for k, L in iteritems(dag):
if eng_scan == 1 and not re_eng.match(sentence[k]):
eng_scan = 0
yield eng_buf
if len(L) == 1 and k > old_j:
word = sentence[k:L[0] + 1]
if re_eng.match(word):
if eng_scan == 0:
eng_scan = 1
eng_buf = word
else:
eng_buf += word
if eng_scan == 0:
yield word
old_j = L[0]
else:
for j in L:
if j > k:
yield sentence[k:j + 1]
old_j = j
if eng_scan == 1:
yield eng_buf
def __cut_DAG_NO_HMM(self, sentence):
DAG = self.get_DAG(sentence)
route = {}
self.calc(sentence, DAG, route)
x = 0
N = len(sentence)
buf = ''
while x < N:
y = route[x][1] + 1
l_word = sentence[x:y]
if re_eng.match(l_word) and len(l_word) == 1:
buf += l_word
x = y
else:
if buf:
yield buf
buf = ''
yield l_word
x = y
if buf:
yield buf
buf = ''
def __cut_DAG(self, sentence):
DAG = self.get_DAG(sentence)
route = {}
self.calc(sentence, DAG, route)
x = 0
buf = ''
N = len(sentence)
while x < N:
y = route[x][1] + 1
l_word = sentence[x:y]
if y - x == 1:
buf += l_word
else:
if buf:
if len(buf) == 1:
yield buf
buf = ''
else:
if not self.FREQ.get(buf):
recognized = finalseg.cut(buf)
for t in recognized:
yield t
else:
for elem in buf:
yield elem
buf = ''
yield l_word
x = y
if buf:
if len(buf) == 1:
yield buf
elif not self.FREQ.get(buf):
recognized = finalseg.cut(buf)
for t in recognized:
yield t
else:
for elem in buf:
yield elem
def cut(self, sentence, cut_all=False, HMM=True, use_paddle=False):
"""
The main function that segments an entire sentence that contains
Chinese characters into separated words.
Parameter:
- sentence: The str(unicode) to be segmented.
- cut_all: Model type. True for full pattern, False for accurate pattern.
- HMM: Whether to use the Hidden Markov Model.
"""
is_paddle_installed = check_paddle_install['is_paddle_installed']
sentence = strdecode(sentence)
if use_paddle and is_paddle_installed:
# if sentence is null, it will raise core exception in paddle.
if sentence is None or len(sentence) == 0:
return
import jieba.lac_small.predict as predict
results = predict.get_sent(sentence)
for sent in results:
if sent is None:
continue
yield sent
return
re_han = re_han_default
re_skip = re_skip_default
if cut_all:
cut_block = self.__cut_all
elif HMM:
cut_block = self.__cut_DAG
else:
cut_block = self.__cut_DAG_NO_HMM
blocks = re_han.split(sentence)
for blk in blocks:
if not blk:
continue
if re_han.match(blk):
for word in cut_block(blk):
yield word
else:
tmp = re_skip.split(blk)
for x in tmp:
if re_skip.match(x):
yield x
elif not cut_all:
for xx in x:
yield xx
else:
yield x
def cut_for_search(self, sentence, HMM=True):
"""
Finer segmentation for search engines.
"""
words = self.cut(sentence, HMM=HMM)
for w in words:
if len(w) > 2:
for i in xrange(len(w) - 1):
gram2 = w[i:i + 2]
if self.FREQ.get(gram2):
yield gram2
if len(w) > 3:
for i in xrange(len(w) - 2):
gram3 = w[i:i + 3]
if self.FREQ.get(gram3):
yield gram3
yield w
def lcut(self, *args, **kwargs):
return list(self.cut(*args, **kwargs))
def lcut_for_search(self, *args, **kwargs):
return list(self.cut_for_search(*args, **kwargs))
_lcut = lcut
_lcut_for_search = lcut_for_search
def _lcut_no_hmm(self, sentence):
return self.lcut(sentence, False, False)
def _lcut_all(self, sentence):
return self.lcut(sentence, True)
def _lcut_for_search_no_hmm(self, sentence):
return self.lcut_for_search(sentence, False)
def get_dict_file(self):
if self.dictionary == DEFAULT_DICT:
return get_module_res(DEFAULT_DICT_NAME)
else:
return open(self.dictionary, 'rb')
def load_userdict(self, f):
'''
Load personalized dict to improve detect rate.
Parameter:
- f : A plain text file contains words and their ocurrences.
Can be a file-like object, or the path of the dictionary file,
whose encoding must be utf-8.
Structure of dict file:
word1 freq1 word_type1
word2 freq2 word_type2
...
Word type may be ignored
'''
self.check_initialized()
if isinstance(f, string_types):
f_name = f
f = open(f, 'rb')
else:
f_name = resolve_filename(f)
for lineno, ln in enumerate(f, 1):
line = ln.strip()
if not isinstance(line, text_type):
try:
line = line.decode('utf-8').lstrip('\ufeff')
except UnicodeDecodeError:
raise ValueError('dictionary file %s must be utf-8' % f_name)
if not line:
continue
# match won't be None because there's at least one character
word, freq, tag = re_userdict.match(line).groups()
if freq is not None:
freq = freq.strip()
if tag is not None:
tag = tag.strip()
self.add_word(word, freq, tag)
def add_word(self, word, freq=None, tag=None):
"""
Add a word to dictionary.
freq and tag can be omitted, freq defaults to be a calculated value
that ensures the word can be cut out.
"""
self.check_initialized()
word = strdecode(word)
freq = int(freq) if freq is not None else self.suggest_freq(word, False)
self.FREQ[word] = freq
self.total += freq
if tag:
self.user_word_tag_tab[word] = tag
for ch in xrange(len(word)):
wfrag = word[:ch + 1]
if wfrag not in self.FREQ:
self.FREQ[wfrag] = 0
if freq == 0:
finalseg.add_force_split(word)
def del_word(self, word):
"""
Convenient function for deleting a word.
"""
self.add_word(word, 0)
def suggest_freq(self, segment, tune=False):
"""
Suggest word frequency to force the characters in a word to be
joined or splitted.
Parameter:
- segment : The segments that the word is expected to be cut into,
If the word should be treated as a whole, use a str.
- tune : If True, tune the word frequency.
Note that HMM may affect the final result. If the result doesn't change,
set HMM=False.
"""
self.check_initialized()
ftotal = float(self.total)
freq = 1
if isinstance(segment, string_types):
word = segment
for seg in self.cut(word, HMM=False):
freq *= self.FREQ.get(seg, 1) / ftotal
freq = max(int(freq * self.total) + 1, self.FREQ.get(word, 1))
else:
segment = tuple(map(strdecode, segment))
word = ''.join(segment)
for seg in segment:
freq *= self.FREQ.get(seg, 1) / ftotal
freq = min(int(freq * self.total), self.FREQ.get(word, 0))
if tune:
self.add_word(word, freq)
return freq
def tokenize(self, unicode_sentence, mode="default", HMM=True):
"""
Tokenize a sentence and yields tuples of (word, start, end)
Parameter:
- sentence: the str(unicode) to be segmented.
- mode: "default" or "search", "search" is for finer segmentation.
- HMM: whether to use the Hidden Markov Model.
"""
if not isinstance(unicode_sentence, text_type):
raise ValueError("jieba: the input parameter should be unicode.")
start = 0
if mode == 'default':
for w in self.cut(unicode_sentence, HMM=HMM):
width = len(w)
yield (w, start, start + width)
start += width
else:
for w in self.cut(unicode_sentence, HMM=HMM):
width = len(w)
if len(w) > 2:
for i in xrange(len(w) - 1):
gram2 = w[i:i + 2]
if self.FREQ.get(gram2):
yield (gram2, start + i, start + i + 2)
if len(w) > 3:
for i in xrange(len(w) - 2):
gram3 = w[i:i + 3]
if self.FREQ.get(gram3):
yield (gram3, start + i, start + i + 3)
yield (w, start, start + width)
start += width
def set_dictionary(self, dictionary_path):
with self.lock:
abs_path = _get_abs_path(dictionary_path)
if not os.path.isfile(abs_path):
raise Exception("jieba: file does not exist: " + abs_path)
self.dictionary = abs_path
self.initialized = False
# default Tokenizer instance
dt = Tokenizer()
# global functions
get_FREQ = lambda k, d=None: dt.FREQ.get(k, d)
add_word = dt.add_word
calc = dt.calc
cut = dt.cut
lcut = dt.lcut
cut_for_search = dt.cut_for_search
lcut_for_search = dt.lcut_for_search
del_word = dt.del_word
get_DAG = dt.get_DAG
get_dict_file = dt.get_dict_file
initialize = dt.initialize
load_userdict = dt.load_userdict
set_dictionary = dt.set_dictionary
suggest_freq = dt.suggest_freq
tokenize = dt.tokenize
user_word_tag_tab = dt.user_word_tag_tab
def _lcut_all(s):
return dt._lcut_all(s)
def _lcut(s):
return dt._lcut(s)
def _lcut_no_hmm(s):
return dt._lcut_no_hmm(s)
def _lcut_all(s):
return dt._lcut_all(s)
def _lcut_for_search(s):
return dt._lcut_for_search(s)
def _lcut_for_search_no_hmm(s):
return dt._lcut_for_search_no_hmm(s)
def _pcut(sentence, cut_all=False, HMM=True):
parts = strdecode(sentence).splitlines(True)
if cut_all:
result = pool.map(_lcut_all, parts)
elif HMM:
result = pool.map(_lcut, parts)
else:
result = pool.map(_lcut_no_hmm, parts)
for r in result:
for w in r:
yield w
def _pcut_for_search(sentence, HMM=True):
parts = strdecode(sentence).splitlines(True)
if HMM:
result = pool.map(_lcut_for_search, parts)
else:
result = pool.map(_lcut_for_search_no_hmm, parts)
for r in result:
for w in r:
yield w
def enable_parallel(processnum=None):
"""
Change the module's `cut` and `cut_for_search` functions to the
parallel version.
Note that this only works using dt, custom Tokenizer
instances are not supported.
"""
global pool, dt, cut, cut_for_search
from multiprocessing import cpu_count
if os.name == 'nt':
raise NotImplementedError(
"jieba: parallel mode only supports posix system")
else:
from multiprocessing import Pool
dt.check_initialized()
if processnum is None:
processnum = cpu_count()
pool = Pool(processnum)
cut = _pcut
cut_for_search = _pcut_for_search
def disable_parallel():
global pool, dt, cut, cut_for_search
if pool:
pool.close()
pool = None
cut = dt.cut
cut_for_search = dt.cut_for_search
|