File size: 5,680 Bytes
0eb9a00 504bdaf 88498af 504bdaf 0eb9a00 504bdaf 4afbe90 7f8df56 5b18a41 7f8df56 bc5b298 f77e710 bc5b298 7f8df56 c4e395c 54e2486 c4e395c 54e2486 c4e395c 54e2486 c4e395c 54e2486 c4e395c 54e2486 4afbe90 34298e4 4afbe90 c87dc09 e751fd8 c87dc09 4afbe90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
language:
- grc
base_model:
- pranaydeeps/Ancient-Greek-BERT
tags:
- token-classification
inference:
parameters:
aggregation_strategy: first
widget:
- text: ταῦτα εἴπας ὁ Ἀλέξανδρος παρίζει Πέρσῃ ἀνδρὶ ἄνδρα Μακεδόνα ὡς γυναῖκα τῷ λόγῳ · οἳ δέ , ἐπείτε σφέων οἱ Πέρσαι ψαύειν ἐπειρῶντο , διεργάζοντο αὐτούς .
---
# Named Entity Recognition for Ancient Greek
Pretrained NER tagging model for ancient Greek
# Data
We trained the models on available annotated corpora in Ancient Greek.
There are only two sizeable annotated datasets in Ancient Greek, which are currently un- der release: the first one by Berti 2023,
consists of a fully annotated text of Athenaeus’ Deipnosophists, developed in the context of the Digital Athenaeus project.
The second one by Foka et al. 2020, is a fully annotated text of Pausanias’ Periegesis Hellados, developed in the context of the
Digital Periegesis project. In addition, we used smaller corpora annotated by students and scholars on Recogito:
the Odyssey annotated by Kemp 2021; a mixed corpus including excerpts from the Library attributed to Apollodorus and from Strabo’s Geography,
annotated by Chiara Palladino; Book 1 of Xenophon’s Anabasis, created by Thomas Visser; and Demos- thenes’ Against Neaira,
created by Rachel Milio.
### Training Dataset
| | **Person** | **Location** | **NORP** | **MISC** |
|----------------|------------------|-------------------|-------------------|-------------------|
| Odyssey | 2.469 | 698 | 0 | 0 |
| Deipnosophists | 14.921 | 2.699 | 5.110 | 3.060 |
| Pausanias | 10.205 | 8.670 | 4.972 | 0 |
| Other Datasets | 3.283 | 2.040 | 1.089 | 0 |
| **Total** | **30.878** | **14.107** | **11.171** | **3.060** |
---
### Validation Dataset
| | **Person** | **Location** | **NORP** | **MISC** |
|----------------|------------------|-------------------|-------------------|-------------------|
| Xenophon | 1.190 | 796 | 857 | 0 |
# Results
| Class | Metric | Test | Validation |
|---------|-----------|--------|--------|
| **LOC** | precision | 82.92% | 87.10% |
| | recall | 81.30% | 87.10% |
| | f1 | 82.11% | 87.10% |
| **MISC** | precision | 80.43% | 0 |
| | recall | 70.04% | 0 |
| | f1 | 74.87% | 0 |
| **NORP** | precision | 87.10% | 92.82% |
| | recall | 90.81% | 93.42% |
| | f1 | 88.92% | 93.12% |
| **PER** | precision | 92.61% | 95.52% |
| | recall | 92.94% | 95.21% |
| | f1 | 92.77% | 95.37% |
| **Overall** | precision | 88.92% | 92.63% |
| | recall | 88.82% | 92.79% |
| | f1 | 88.87% | 92.71% |
| | Accuracy | 97.28% | 98.42% |
# Usage
This [colab notebook](https://colab.research.google.com/drive/1Z7-c5j0FZvzFPlkS0DavOzA3UI5PXfjP?usp=sharing) contains the necessary code to use the model.
```python
from transformers import pipeline
# create pipeline for NER
ner = pipeline('ner', model="UGARIT/grc-ner-bert", aggregation_strategy = 'first')
ner("ταῦτα εἴπας ὁ Ἀλέξανδρος παρίζει Πέρσῃ ἀνδρὶ ἄνδρα Μακεδόνα ὡς γυναῖκα τῷ λόγῳ · οἳ δέ , ἐπείτε σφέων οἱ Πέρσαι ψαύειν ἐπειρῶντο , διεργάζοντο αὐτούς .")
```
Output
```
[{'entity_group': 'PER',
'score': 0.9999349,
'word': 'αλεξανδρος',
'start': 14,
'end': 24},
{'entity_group': 'NORP',
'score': 0.9369563,
'word': 'περση',
'start': 33,
'end': 38},
{'entity_group': 'NORP',
'score': 0.60742134,
'word': 'μακεδονα',
'start': 51,
'end': 59},
{'entity_group': 'NORP',
'score': 0.9900457,
'word': 'περσαι',
'start': 105,
'end': 111}]
```
# Citation:
```
@inproceedings{palladino-yousef-2024-development,
title = "Development of Robust {NER} Models and Named Entity Tagsets for {A}ncient {G}reek",
author = "Palladino, Chiara and
Yousef, Tariq",
editor = "Sprugnoli, Rachele and
Passarotti, Marco",
booktitle = "Proceedings of the Third Workshop on Language Technologies for Historical and Ancient Languages (LT4HALA) @ LREC-COLING-2024",
month = may,
year = "2024",
address = "Torino, Italia",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lt4hala-1.11",
pages = "89--97",
abstract = "This contribution presents a novel approach to the development and evaluation of transformer-based models for Named Entity Recognition and Classification in Ancient Greek texts. We trained two models with annotated datasets by consolidating potentially ambiguous entity types under a harmonized set of classes. Then, we tested their performance with out-of-domain texts, reproducing a real-world use case. Both models performed very well under these conditions, with the multilingual model being slightly superior on the monolingual one. In the conclusion, we emphasize current limitations due to the scarcity of high-quality annotated corpora and to the lack of cohesive annotation strategies for ancient languages.",
}
``` |