File size: 5,680 Bytes
0eb9a00
504bdaf
 
 
 
 
 
88498af
 
 
504bdaf
 
0eb9a00
504bdaf
 
4afbe90
 
7f8df56
5b18a41
 
 
 
 
 
 
 
 
 
7f8df56
bc5b298
 
 
 
 
 
 
 
 
 
 
f77e710
bc5b298
7f8df56
 
 
c4e395c
54e2486
 
 
c4e395c
 
54e2486
c4e395c
 
54e2486
c4e395c
 
54e2486
c4e395c
 
 
 
 
 
 
54e2486
 
4afbe90
34298e4
4afbe90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c87dc09
 
 
 
e751fd8
 
 
 
 
 
 
 
 
 
 
 
 
 
c87dc09
4afbe90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
language: 
  - grc
base_model:
  - pranaydeeps/Ancient-Greek-BERT
tags:
  - token-classification
inference:
  parameters:
    aggregation_strategy: first
widget:
  - text: ταῦτα εἴπας  Ἀλέξανδρος παρίζει Πέρσῃ ἀνδρὶ ἄνδρα Μακεδόνα ὡς γυναῖκα τῷ λόγῳ · οἳ δέ , ἐπείτε σφέων οἱ Πέρσαι ψαύειν ἐπειρῶντο , διεργάζοντο αὐτούς .
---
# Named Entity Recognition for Ancient Greek 

Pretrained NER tagging model for ancient Greek

# Data

We trained the models on available annotated corpora in Ancient Greek. 
There are only two sizeable annotated datasets in Ancient Greek, which are currently un- der release: the first one by Berti 2023, 
consists of a fully annotated text of Athenaeus’ Deipnosophists, developed in the context of the Digital Athenaeus project. 
The second one by Foka et al. 2020, is a fully annotated text of Pausanias’ Periegesis Hellados, developed in the context of the 
Digital Periegesis project. In addition, we used smaller corpora annotated by students and scholars on Recogito: 
the Odyssey annotated by Kemp 2021; a mixed corpus including excerpts from the Library attributed to Apollodorus and from Strabo’s Geography, 
annotated by Chiara Palladino; Book 1 of Xenophon’s Anabasis, created by Thomas Visser; and Demos- thenes’ Against Neaira, 
created by Rachel Milio.

### Training Dataset
|                | **Person**       | **Location**      | **NORP**          | **MISC**          |
|----------------|------------------|-------------------|-------------------|-------------------|
| Odyssey        | 2.469            | 698               | 0                 | 0                 |
| Deipnosophists | 14.921           | 2.699             | 5.110             | 3.060             |
| Pausanias      | 10.205           | 8.670             | 4.972             | 0                 |
| Other Datasets | 3.283            | 2.040             | 1.089             | 0                 |
| **Total**      | **30.878**       | **14.107**        | **11.171**        | **3.060**         |

---
### Validation Dataset
|                | **Person**       |      **Location** | **NORP**          | **MISC**          |
|----------------|------------------|-------------------|-------------------|-------------------|
| Xenophon       | 1.190            | 796               | 857               | 0                 |



# Results
| Class   | Metric | Test | Validation |
|---------|-----------|--------|--------|
| **LOC**     | precision | 82.92% | 87.10% |
|         | recall    | 81.30% | 87.10% |
|         | f1        | 82.11% | 87.10% |
| **MISC**    | precision | 80.43% | 0      |
|         | recall    | 70.04% | 0      |
|         | f1        | 74.87% | 0      |
| **NORP**    | precision | 87.10% | 92.82% |
|         | recall    | 90.81% | 93.42% |
|         | f1        | 88.92% | 93.12% |
| **PER**     | precision | 92.61% | 95.52% |
|         | recall    | 92.94% | 95.21% |
|         | f1        | 92.77% | 95.37% |
| **Overall** | precision | 88.92% | 92.63% |
|         | recall    | 88.82% | 92.79% |
|         | f1        | 88.87% | 92.71% |
|         | Accuracy  | 97.28% | 98.42% |



# Usage
This [colab notebook](https://colab.research.google.com/drive/1Z7-c5j0FZvzFPlkS0DavOzA3UI5PXfjP?usp=sharing) contains the necessary code to use the model.
```python
from transformers import pipeline

# create pipeline for NER
ner = pipeline('ner', model="UGARIT/grc-ner-bert", aggregation_strategy = 'first')
ner("ταῦτα εἴπας ὁ Ἀλέξανδρος παρίζει Πέρσῃ ἀνδρὶ ἄνδρα Μακεδόνα ὡς γυναῖκα τῷ λόγῳ · οἳ δέ , ἐπείτε σφέων οἱ Πέρσαι ψαύειν ἐπειρῶντο , διεργάζοντο αὐτούς .")
```
Output
```
[{'entity_group': 'PER',
  'score': 0.9999349,
  'word': 'αλεξανδρος',
  'start': 14,
  'end': 24},
 {'entity_group': 'NORP',
  'score': 0.9369563,
  'word': 'περση',
  'start': 33,
  'end': 38},
 {'entity_group': 'NORP',
  'score': 0.60742134,
  'word': 'μακεδονα',
  'start': 51,
  'end': 59},
 {'entity_group': 'NORP',
  'score': 0.9900457,
  'word': 'περσαι',
  'start': 105,
  'end': 111}]
```

# Citation:
```
@inproceedings{palladino-yousef-2024-development,
    title = "Development of Robust {NER} Models and Named Entity Tagsets for {A}ncient {G}reek",
    author = "Palladino, Chiara  and
      Yousef, Tariq",
    editor = "Sprugnoli, Rachele  and
      Passarotti, Marco",
    booktitle = "Proceedings of the Third Workshop on Language Technologies for Historical and Ancient Languages (LT4HALA) @ LREC-COLING-2024",
    month = may,
    year = "2024",
    address = "Torino, Italia",
    publisher = "ELRA and ICCL",
    url = "https://aclanthology.org/2024.lt4hala-1.11",
    pages = "89--97",
    abstract = "This contribution presents a novel approach to the development and evaluation of transformer-based models for Named Entity Recognition and Classification in Ancient Greek texts. We trained two models with annotated datasets by consolidating potentially ambiguous entity types under a harmonized set of classes. Then, we tested their performance with out-of-domain texts, reproducing a real-world use case. Both models performed very well under these conditions, with the multilingual model being slightly superior on the monolingual one. In the conclusion, we emphasize current limitations due to the scarcity of high-quality annotated corpora and to the lack of cohesive annotation strategies for ancient languages.",
}
```