File size: 33,440 Bytes
c18a8a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
2022-10-26 15:28:10,168 ----------------------------------------------------------------------------------------------------
2022-10-26 15:28:10,173 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): XLMRobertaModel(
(embeddings): RobertaEmbeddings(
(word_embeddings): Embedding(250002, 768, padding_idx=1)
(position_embeddings): Embedding(514, 768, padding_idx=1)
(token_type_embeddings): Embedding(1, 768)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): RobertaEncoder(
(layer): ModuleList(
(0): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(1): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(2): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(3): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(4): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(5): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(6): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(7): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(8): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(9): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(10): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(11): RobertaLayer(
(attention): RobertaAttention(
(self): RobertaSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): RobertaSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): RobertaIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): RobertaOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): RobertaPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(word_dropout): WordDropout(p=0.05)
(locked_dropout): LockedDropout(p=0.5)
(embedding2nn): Linear(in_features=768, out_features=768, bias=True)
(rnn): LSTM(768, 256, batch_first=True, bidirectional=True)
(linear): Linear(in_features=512, out_features=15, bias=True)
(loss_function): ViterbiLoss()
(crf): CRF()
)"
2022-10-26 15:28:10,176 ----------------------------------------------------------------------------------------------------
2022-10-26 15:28:10,180 Corpus: "Corpus: 8551 train + 1425 dev + 1425 test sentences"
2022-10-26 15:28:10,182 ----------------------------------------------------------------------------------------------------
2022-10-26 15:28:10,184 Parameters:
2022-10-26 15:28:10,186 - learning_rate: "0.010000"
2022-10-26 15:28:10,187 - mini_batch_size: "8"
2022-10-26 15:28:10,188 - patience: "3"
2022-10-26 15:28:10,189 - anneal_factor: "0.5"
2022-10-26 15:28:10,191 - max_epochs: "10"
2022-10-26 15:28:10,192 - shuffle: "True"
2022-10-26 15:28:10,193 - train_with_dev: "False"
2022-10-26 15:28:10,194 - batch_growth_annealing: "False"
2022-10-26 15:28:10,196 ----------------------------------------------------------------------------------------------------
2022-10-26 15:28:10,197 Model training base path: "/content/model/xlmr_ner"
2022-10-26 15:28:10,198 ----------------------------------------------------------------------------------------------------
2022-10-26 15:28:10,199 Device: cuda:0
2022-10-26 15:28:10,201 ----------------------------------------------------------------------------------------------------
2022-10-26 15:28:10,202 Embeddings storage mode: none
2022-10-26 15:28:10,203 ----------------------------------------------------------------------------------------------------
2022-10-26 15:30:29,962 epoch 1 - iter 106/1069 - loss 0.55101171 - samples/sec: 6.07 - lr: 0.010000
2022-10-26 15:32:28,714 epoch 1 - iter 212/1069 - loss 0.35636418 - samples/sec: 7.14 - lr: 0.010000
2022-10-26 15:34:23,625 epoch 1 - iter 318/1069 - loss 0.28047260 - samples/sec: 7.38 - lr: 0.010000
2022-10-26 15:36:24,015 epoch 1 - iter 424/1069 - loss 0.23890211 - samples/sec: 7.04 - lr: 0.010000
2022-10-26 15:38:21,987 epoch 1 - iter 530/1069 - loss 0.21322222 - samples/sec: 7.19 - lr: 0.010000
2022-10-26 15:40:22,521 epoch 1 - iter 636/1069 - loss 0.19431796 - samples/sec: 7.04 - lr: 0.010000
2022-10-26 15:42:18,754 epoch 1 - iter 742/1069 - loss 0.18084010 - samples/sec: 7.30 - lr: 0.010000
2022-10-26 15:44:18,344 epoch 1 - iter 848/1069 - loss 0.16975329 - samples/sec: 7.09 - lr: 0.010000
2022-10-26 15:46:14,738 epoch 1 - iter 954/1069 - loss 0.16158584 - samples/sec: 7.29 - lr: 0.010000
2022-10-26 15:48:14,067 epoch 1 - iter 1060/1069 - loss 0.15491697 - samples/sec: 7.11 - lr: 0.010000
2022-10-26 15:48:24,569 ----------------------------------------------------------------------------------------------------
2022-10-26 15:48:24,577 EPOCH 1 done: loss 0.1543 - lr 0.010000
2022-10-26 15:50:17,480 Evaluating as a multi-label problem: False
2022-10-26 15:50:17,512 DEV : loss 0.060714565217494965 - f1-score (micro avg) 0.7908
2022-10-26 15:50:17,553 BAD EPOCHS (no improvement): 0
2022-10-26 15:50:17,554 saving best model
2022-10-26 15:50:23,470 ----------------------------------------------------------------------------------------------------
2022-10-26 15:52:24,219 epoch 2 - iter 106/1069 - loss 0.08869057 - samples/sec: 7.02 - lr: 0.010000
2022-10-26 15:54:21,594 epoch 2 - iter 212/1069 - loss 0.08600343 - samples/sec: 7.23 - lr: 0.010000
2022-10-26 15:56:19,809 epoch 2 - iter 318/1069 - loss 0.08546665 - samples/sec: 7.17 - lr: 0.010000
2022-10-26 15:58:17,214 epoch 2 - iter 424/1069 - loss 0.08476718 - samples/sec: 7.22 - lr: 0.010000
2022-10-26 16:00:16,114 epoch 2 - iter 530/1069 - loss 0.08542624 - samples/sec: 7.13 - lr: 0.010000
2022-10-26 16:02:13,540 epoch 2 - iter 636/1069 - loss 0.08522910 - samples/sec: 7.22 - lr: 0.010000
2022-10-26 16:04:12,854 epoch 2 - iter 742/1069 - loss 0.08502467 - samples/sec: 7.11 - lr: 0.010000
2022-10-26 16:06:13,219 epoch 2 - iter 848/1069 - loss 0.08373459 - samples/sec: 7.05 - lr: 0.010000
2022-10-26 16:08:09,808 epoch 2 - iter 954/1069 - loss 0.08316639 - samples/sec: 7.27 - lr: 0.010000
2022-10-26 16:10:11,036 epoch 2 - iter 1060/1069 - loss 0.08215396 - samples/sec: 7.00 - lr: 0.010000
2022-10-26 16:10:21,246 ----------------------------------------------------------------------------------------------------
2022-10-26 16:10:21,249 EPOCH 2 done: loss 0.0821 - lr 0.010000
2022-10-26 16:12:13,875 Evaluating as a multi-label problem: False
2022-10-26 16:12:13,905 DEV : loss 0.05180404335260391 - f1-score (micro avg) 0.8408
2022-10-26 16:12:13,947 BAD EPOCHS (no improvement): 0
2022-10-26 16:12:13,948 saving best model
2022-10-26 16:12:19,344 ----------------------------------------------------------------------------------------------------
2022-10-26 16:14:19,879 epoch 3 - iter 106/1069 - loss 0.06627178 - samples/sec: 7.04 - lr: 0.010000
2022-10-26 16:16:18,272 epoch 3 - iter 212/1069 - loss 0.07094348 - samples/sec: 7.16 - lr: 0.010000
2022-10-26 16:18:18,453 epoch 3 - iter 318/1069 - loss 0.07194093 - samples/sec: 7.06 - lr: 0.010000
2022-10-26 16:20:15,802 epoch 3 - iter 424/1069 - loss 0.07242840 - samples/sec: 7.23 - lr: 0.010000
2022-10-26 16:22:12,248 epoch 3 - iter 530/1069 - loss 0.07171872 - samples/sec: 7.28 - lr: 0.010000
2022-10-26 16:24:12,231 epoch 3 - iter 636/1069 - loss 0.07162092 - samples/sec: 7.07 - lr: 0.010000
2022-10-26 16:26:10,382 epoch 3 - iter 742/1069 - loss 0.07130310 - samples/sec: 7.18 - lr: 0.010000
2022-10-26 16:28:08,953 epoch 3 - iter 848/1069 - loss 0.07050136 - samples/sec: 7.15 - lr: 0.010000
2022-10-26 16:30:09,728 epoch 3 - iter 954/1069 - loss 0.07070517 - samples/sec: 7.02 - lr: 0.010000
2022-10-26 16:32:08,721 epoch 3 - iter 1060/1069 - loss 0.07033198 - samples/sec: 7.13 - lr: 0.010000
2022-10-26 16:32:18,654 ----------------------------------------------------------------------------------------------------
2022-10-26 16:32:18,656 EPOCH 3 done: loss 0.0702 - lr 0.010000
2022-10-26 16:34:10,956 Evaluating as a multi-label problem: False
2022-10-26 16:34:10,986 DEV : loss 0.04575943946838379 - f1-score (micro avg) 0.8693
2022-10-26 16:34:11,026 BAD EPOCHS (no improvement): 0
2022-10-26 16:34:11,029 saving best model
2022-10-26 16:34:16,564 ----------------------------------------------------------------------------------------------------
2022-10-26 16:36:12,350 epoch 4 - iter 106/1069 - loss 0.06432601 - samples/sec: 7.32 - lr: 0.010000
2022-10-26 16:38:08,474 epoch 4 - iter 212/1069 - loss 0.06376094 - samples/sec: 7.30 - lr: 0.010000
2022-10-26 16:40:03,219 epoch 4 - iter 318/1069 - loss 0.06273795 - samples/sec: 7.39 - lr: 0.010000
2022-10-26 16:41:59,110 epoch 4 - iter 424/1069 - loss 0.06153989 - samples/sec: 7.32 - lr: 0.010000
2022-10-26 16:43:57,347 epoch 4 - iter 530/1069 - loss 0.06137878 - samples/sec: 7.17 - lr: 0.010000
2022-10-26 16:45:55,146 epoch 4 - iter 636/1069 - loss 0.06072772 - samples/sec: 7.20 - lr: 0.010000
2022-10-26 16:47:53,049 epoch 4 - iter 742/1069 - loss 0.06031769 - samples/sec: 7.19 - lr: 0.010000
2022-10-26 16:49:50,705 epoch 4 - iter 848/1069 - loss 0.06084099 - samples/sec: 7.21 - lr: 0.010000
2022-10-26 16:51:49,833 epoch 4 - iter 954/1069 - loss 0.06096388 - samples/sec: 7.12 - lr: 0.010000
2022-10-26 16:53:45,640 epoch 4 - iter 1060/1069 - loss 0.06061743 - samples/sec: 7.32 - lr: 0.010000
2022-10-26 16:53:54,974 ----------------------------------------------------------------------------------------------------
2022-10-26 16:53:54,976 EPOCH 4 done: loss 0.0606 - lr 0.010000
2022-10-26 16:55:45,518 Evaluating as a multi-label problem: False
2022-10-26 16:55:45,548 DEV : loss 0.04747875779867172 - f1-score (micro avg) 0.8627
2022-10-26 16:55:45,589 BAD EPOCHS (no improvement): 1
2022-10-26 16:55:45,590 ----------------------------------------------------------------------------------------------------
2022-10-26 16:57:41,259 epoch 5 - iter 106/1069 - loss 0.05285565 - samples/sec: 7.33 - lr: 0.010000
2022-10-26 16:59:40,296 epoch 5 - iter 212/1069 - loss 0.05049977 - samples/sec: 7.12 - lr: 0.010000
2022-10-26 17:01:35,184 epoch 5 - iter 318/1069 - loss 0.05297933 - samples/sec: 7.38 - lr: 0.010000
2022-10-26 17:03:34,028 epoch 5 - iter 424/1069 - loss 0.05293744 - samples/sec: 7.14 - lr: 0.010000
2022-10-26 17:05:29,295 epoch 5 - iter 530/1069 - loss 0.05359386 - samples/sec: 7.36 - lr: 0.010000
2022-10-26 17:07:25,593 epoch 5 - iter 636/1069 - loss 0.05307424 - samples/sec: 7.29 - lr: 0.010000
2022-10-26 17:09:22,893 epoch 5 - iter 742/1069 - loss 0.05323355 - samples/sec: 7.23 - lr: 0.010000
2022-10-26 17:11:22,602 epoch 5 - iter 848/1069 - loss 0.05272547 - samples/sec: 7.08 - lr: 0.010000
2022-10-26 17:13:22,960 epoch 5 - iter 954/1069 - loss 0.05280553 - samples/sec: 7.05 - lr: 0.010000
2022-10-26 17:15:20,527 epoch 5 - iter 1060/1069 - loss 0.05265360 - samples/sec: 7.21 - lr: 0.010000
2022-10-26 17:15:29,931 ----------------------------------------------------------------------------------------------------
2022-10-26 17:15:29,932 EPOCH 5 done: loss 0.0526 - lr 0.010000
2022-10-26 17:17:21,728 Evaluating as a multi-label problem: False
2022-10-26 17:17:21,760 DEV : loss 0.03879784420132637 - f1-score (micro avg) 0.8864
2022-10-26 17:17:21,803 BAD EPOCHS (no improvement): 0
2022-10-26 17:17:21,804 saving best model
2022-10-26 17:17:27,330 ----------------------------------------------------------------------------------------------------
2022-10-26 17:19:26,401 epoch 6 - iter 106/1069 - loss 0.04801558 - samples/sec: 7.12 - lr: 0.010000
2022-10-26 17:21:22,988 epoch 6 - iter 212/1069 - loss 0.05008290 - samples/sec: 7.27 - lr: 0.010000
2022-10-26 17:23:16,794 epoch 6 - iter 318/1069 - loss 0.04925649 - samples/sec: 7.45 - lr: 0.010000
2022-10-26 17:25:15,532 epoch 6 - iter 424/1069 - loss 0.04786643 - samples/sec: 7.14 - lr: 0.010000
2022-10-26 17:27:13,913 epoch 6 - iter 530/1069 - loss 0.04879792 - samples/sec: 7.16 - lr: 0.010000
2022-10-26 17:29:10,114 epoch 6 - iter 636/1069 - loss 0.04800786 - samples/sec: 7.30 - lr: 0.010000
2022-10-26 17:31:07,810 epoch 6 - iter 742/1069 - loss 0.04755361 - samples/sec: 7.21 - lr: 0.010000
2022-10-26 17:33:04,496 epoch 6 - iter 848/1069 - loss 0.04782375 - samples/sec: 7.27 - lr: 0.010000
2022-10-26 17:35:05,834 epoch 6 - iter 954/1069 - loss 0.04776160 - samples/sec: 6.99 - lr: 0.010000
2022-10-26 17:37:03,878 epoch 6 - iter 1060/1069 - loss 0.04743945 - samples/sec: 7.18 - lr: 0.010000
2022-10-26 17:37:14,466 ----------------------------------------------------------------------------------------------------
2022-10-26 17:37:14,468 EPOCH 6 done: loss 0.0475 - lr 0.010000
2022-10-26 17:39:07,562 Evaluating as a multi-label problem: False
2022-10-26 17:39:07,592 DEV : loss 0.03874654322862625 - f1-score (micro avg) 0.8908
2022-10-26 17:39:07,633 BAD EPOCHS (no improvement): 0
2022-10-26 17:39:07,635 saving best model
2022-10-26 17:39:13,242 ----------------------------------------------------------------------------------------------------
2022-10-26 17:41:11,924 epoch 7 - iter 106/1069 - loss 0.04334369 - samples/sec: 7.15 - lr: 0.010000
2022-10-26 17:43:11,382 epoch 7 - iter 212/1069 - loss 0.04192565 - samples/sec: 7.10 - lr: 0.010000
2022-10-26 17:45:08,087 epoch 7 - iter 318/1069 - loss 0.04115627 - samples/sec: 7.27 - lr: 0.010000
2022-10-26 17:47:06,615 epoch 7 - iter 424/1069 - loss 0.04114928 - samples/sec: 7.16 - lr: 0.010000
2022-10-26 17:49:03,863 epoch 7 - iter 530/1069 - loss 0.04105023 - samples/sec: 7.23 - lr: 0.010000
2022-10-26 17:51:02,216 epoch 7 - iter 636/1069 - loss 0.04125208 - samples/sec: 7.17 - lr: 0.010000
2022-10-26 17:53:04,293 epoch 7 - iter 742/1069 - loss 0.04151765 - samples/sec: 6.95 - lr: 0.010000
2022-10-26 17:55:01,446 epoch 7 - iter 848/1069 - loss 0.04170200 - samples/sec: 7.24 - lr: 0.010000
2022-10-26 17:56:59,848 epoch 7 - iter 954/1069 - loss 0.04180177 - samples/sec: 7.16 - lr: 0.010000
2022-10-26 17:58:56,175 epoch 7 - iter 1060/1069 - loss 0.04203413 - samples/sec: 7.29 - lr: 0.010000
2022-10-26 17:59:05,814 ----------------------------------------------------------------------------------------------------
2022-10-26 17:59:05,816 EPOCH 7 done: loss 0.0420 - lr 0.010000
2022-10-26 18:00:59,457 Evaluating as a multi-label problem: False
2022-10-26 18:00:59,486 DEV : loss 0.04413652420043945 - f1-score (micro avg) 0.8968
2022-10-26 18:00:59,527 BAD EPOCHS (no improvement): 0
2022-10-26 18:00:59,529 saving best model
2022-10-26 18:01:05,372 ----------------------------------------------------------------------------------------------------
2022-10-26 18:03:03,422 epoch 8 - iter 106/1069 - loss 0.03592615 - samples/sec: 7.18 - lr: 0.010000
2022-10-26 18:05:00,466 epoch 8 - iter 212/1069 - loss 0.03676863 - samples/sec: 7.25 - lr: 0.010000
2022-10-26 18:06:58,178 epoch 8 - iter 318/1069 - loss 0.03702258 - samples/sec: 7.20 - lr: 0.010000
2022-10-26 18:08:55,170 epoch 8 - iter 424/1069 - loss 0.03704658 - samples/sec: 7.25 - lr: 0.010000
2022-10-26 18:10:52,222 epoch 8 - iter 530/1069 - loss 0.03711348 - samples/sec: 7.25 - lr: 0.010000
2022-10-26 18:12:51,244 epoch 8 - iter 636/1069 - loss 0.03715815 - samples/sec: 7.13 - lr: 0.010000
2022-10-26 18:14:50,229 epoch 8 - iter 742/1069 - loss 0.03708747 - samples/sec: 7.13 - lr: 0.010000
2022-10-26 18:16:47,946 epoch 8 - iter 848/1069 - loss 0.03734575 - samples/sec: 7.20 - lr: 0.010000
2022-10-26 18:18:45,873 epoch 8 - iter 954/1069 - loss 0.03736843 - samples/sec: 7.19 - lr: 0.010000
2022-10-26 18:20:43,504 epoch 8 - iter 1060/1069 - loss 0.03737578 - samples/sec: 7.21 - lr: 0.010000
2022-10-26 18:20:53,262 ----------------------------------------------------------------------------------------------------
2022-10-26 18:20:53,265 EPOCH 8 done: loss 0.0374 - lr 0.010000
2022-10-26 18:22:46,256 Evaluating as a multi-label problem: False
2022-10-26 18:22:46,293 DEV : loss 0.03726610541343689 - f1-score (micro avg) 0.9117
2022-10-26 18:22:46,336 BAD EPOCHS (no improvement): 0
2022-10-26 18:22:46,337 saving best model
2022-10-26 18:22:51,847 ----------------------------------------------------------------------------------------------------
2022-10-26 18:24:50,402 epoch 9 - iter 106/1069 - loss 0.03606101 - samples/sec: 7.15 - lr: 0.010000
2022-10-26 18:26:47,577 epoch 9 - iter 212/1069 - loss 0.03466163 - samples/sec: 7.24 - lr: 0.010000
2022-10-26 18:28:47,029 epoch 9 - iter 318/1069 - loss 0.03420843 - samples/sec: 7.10 - lr: 0.010000
2022-10-26 18:30:43,235 epoch 9 - iter 424/1069 - loss 0.03406325 - samples/sec: 7.30 - lr: 0.010000
2022-10-26 18:32:41,132 epoch 9 - iter 530/1069 - loss 0.03393077 - samples/sec: 7.19 - lr: 0.010000
2022-10-26 18:34:35,953 epoch 9 - iter 636/1069 - loss 0.03438052 - samples/sec: 7.39 - lr: 0.010000
2022-10-26 18:36:33,872 epoch 9 - iter 742/1069 - loss 0.03435922 - samples/sec: 7.19 - lr: 0.010000
2022-10-26 18:38:30,457 epoch 9 - iter 848/1069 - loss 0.03351594 - samples/sec: 7.27 - lr: 0.010000
2022-10-26 18:40:26,775 epoch 9 - iter 954/1069 - loss 0.03363514 - samples/sec: 7.29 - lr: 0.010000
2022-10-26 18:42:26,040 epoch 9 - iter 1060/1069 - loss 0.03301736 - samples/sec: 7.11 - lr: 0.010000
2022-10-26 18:42:34,477 ----------------------------------------------------------------------------------------------------
2022-10-26 18:42:34,480 EPOCH 9 done: loss 0.0330 - lr 0.010000
2022-10-26 18:44:24,572 Evaluating as a multi-label problem: False
2022-10-26 18:44:24,602 DEV : loss 0.04557322338223457 - f1-score (micro avg) 0.9084
2022-10-26 18:44:24,644 BAD EPOCHS (no improvement): 1
2022-10-26 18:44:24,646 ----------------------------------------------------------------------------------------------------
2022-10-26 18:46:21,774 epoch 10 - iter 106/1069 - loss 0.02992093 - samples/sec: 7.24 - lr: 0.010000
2022-10-26 18:48:20,730 epoch 10 - iter 212/1069 - loss 0.02886380 - samples/sec: 7.13 - lr: 0.010000
2022-10-26 18:50:20,679 epoch 10 - iter 318/1069 - loss 0.03109654 - samples/sec: 7.07 - lr: 0.010000
2022-10-26 18:52:14,564 epoch 10 - iter 424/1069 - loss 0.03091892 - samples/sec: 7.45 - lr: 0.010000
2022-10-26 18:54:14,888 epoch 10 - iter 530/1069 - loss 0.02977117 - samples/sec: 7.05 - lr: 0.010000
2022-10-26 18:56:13,992 epoch 10 - iter 636/1069 - loss 0.02969566 - samples/sec: 7.12 - lr: 0.010000
2022-10-26 18:58:12,618 epoch 10 - iter 742/1069 - loss 0.02979601 - samples/sec: 7.15 - lr: 0.010000
2022-10-26 19:00:10,398 epoch 10 - iter 848/1069 - loss 0.03040781 - samples/sec: 7.20 - lr: 0.010000
2022-10-26 19:02:06,063 epoch 10 - iter 954/1069 - loss 0.03029135 - samples/sec: 7.33 - lr: 0.010000
2022-10-26 19:04:05,626 epoch 10 - iter 1060/1069 - loss 0.03035206 - samples/sec: 7.09 - lr: 0.010000
2022-10-26 19:04:15,538 ----------------------------------------------------------------------------------------------------
2022-10-26 19:04:15,540 EPOCH 10 done: loss 0.0303 - lr 0.010000
2022-10-26 19:06:06,586 Evaluating as a multi-label problem: False
2022-10-26 19:06:06,621 DEV : loss 0.03892701491713524 - f1-score (micro avg) 0.9132
2022-10-26 19:06:06,663 BAD EPOCHS (no improvement): 0
2022-10-26 19:06:06,665 saving best model
2022-10-26 19:06:17,597 ----------------------------------------------------------------------------------------------------
2022-10-26 19:06:17,723 loading file /content/model/xlmr_ner/best-model.pt
2022-10-26 19:06:24,597 SequenceTagger predicts: Dictionary with 15 tags: O, S-PER, B-PER, E-PER, I-PER, S-MISC, B-MISC, E-MISC, I-MISC, S-LOC, B-LOC, E-LOC, I-LOC, <START>, <STOP>
2022-10-26 19:08:17,003 Evaluating as a multi-label problem: False
2022-10-26 19:08:17,040 0.9053 0.9316 0.9182 0.8955
2022-10-26 19:08:17,041
Results:
- F-score (micro) 0.9182
- F-score (macro) 0.8875
- Accuracy 0.8955
By class:
precision recall f1-score support
PER 0.9339 0.9633 0.9484 2127
MISC 0.8469 0.9250 0.8842 933
LOC 0.8955 0.7732 0.8299 388
micro avg 0.9053 0.9316 0.9182 3448
macro avg 0.8921 0.8872 0.8875 3448
weighted avg 0.9060 0.9316 0.9177 3448
2022-10-26 19:08:17,045 ----------------------------------------------------------------------------------------------------
|