File size: 1,740 Bytes
03c71eb 2436800 03c71eb 29ded80 2436800 dcf70c3 2436800 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
license: apache-2.0
datasets:
- yuvalkirstain/pickapic_v2
language:
- en
pipeline_tag: text-to-image
---
**Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation** (https://huggingface.co/papers/2402.10210)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/657be24e8d360b690d5b665f/uzhoFO22ZdQ5XjBxxDA1a.png)
# SPIN-Diffusion-iter1
This model is a self-play fine-tuned diffusion model at iteration 1 from [runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) using synthetic data based on the winner images of the [yuvalkirstain/pickapic_v2](https://huggingface.co/datasets/yuvalkirstain/pickapic_v2) dataset. We have also made a Gradio Demo at [UCLA-AGI/SPIN-Diffusion-demo-v1](https://huggingface.co/spaces/UCLA-AGI/SPIN-Diffusion-demo-v1).
## Model Details
### Model Description
- Model type: An diffusion model with unet fine-tuned, based on the strucure of stable diffusion 1.5
- Language(s) (NLP): Primarily English
- License: Apache-2.0
- Finetuned from model: runwayml/stable-diffusion-v1-5
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.0e-05
- train_batch_size: 8
- distributed_type: multi-GPU
- num_devices: 8
- train_gradient_accumulation_steps: 32
- total_train_batch_size: 2048
- optimizer: AdamW
- lr_scheduler: "linear"
- lr_warmup_steps: 200
- num_training_steps: 500
## Citation
```
@misc{yuan2024self,
title={Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation},
author={Yuan, Huizhuo and Chen, Zixiang and Ji, Kaixuan and Gu, Quanquan},
year={2024},
eprint={2402.10210},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
|