yxc97's picture
Upload folder using huggingface_hub
62a2f1c verified
import sys
import os
import traceback
import json
import pickle
import numpy as np
import scanpy as sc
import pandas as pd
import networkx as nx
from tqdm import tqdm
import logging
import torch
import torch.optim as optim
import torch.nn as nn
from sklearn.metrics import r2_score
from torch.optim.lr_scheduler import StepLR
from torch_geometric.nn import SGConv
from copy import deepcopy
from torch_geometric.data import Data, DataLoader
from multiprocessing import Pool
from torch.nn import Sequential, Linear, ReLU
from scipy.stats import pearsonr
from sklearn.metrics import mean_squared_error as mse
from sklearn.metrics import mean_absolute_error as mae
class MLP(torch.nn.Module):
def __init__(self, sizes, batch_norm=True, last_layer_act="linear"):
super(MLP, self).__init__()
layers = []
for s in range(len(sizes) - 1):
layers = layers + [
torch.nn.Linear(sizes[s], sizes[s + 1]),
torch.nn.BatchNorm1d(sizes[s + 1])
if batch_norm and s < len(sizes) - 1 else None,
torch.nn.ReLU()
]
layers = [l for l in layers if l is not None][:-1]
self.activation = last_layer_act
self.network = torch.nn.Sequential(*layers)
self.relu = torch.nn.ReLU()
def forward(self, x):
return self.network(x)
class GEARS_Model(torch.nn.Module):
"""
GEARS model
"""
def __init__(self, args):
"""
:param args: arguments dictionary
"""
super(GEARS_Model, self).__init__()
self.args = args
self.num_genes = args['num_genes']
self.num_perts = args['num_perts']
hidden_size = args['hidden_size']
self.uncertainty = args['uncertainty']
self.num_layers = args['num_go_gnn_layers']
self.indv_out_hidden_size = args['decoder_hidden_size']
self.num_layers_gene_pos = args['num_gene_gnn_layers']
self.no_perturb = args['no_perturb']
self.pert_emb_lambda = 0.2
# perturbation positional embedding added only to the perturbed genes
self.pert_w = nn.Linear(1, hidden_size)
# gene/globel perturbation embedding dictionary lookup
self.gene_emb = nn.Embedding(self.num_genes, hidden_size, max_norm=True)
self.pert_emb = nn.Embedding(self.num_perts, hidden_size, max_norm=True)
# transformation layer
self.emb_trans = nn.ReLU()
self.pert_base_trans = nn.ReLU()
self.transform = nn.ReLU()
self.emb_trans_v2 = MLP([hidden_size, hidden_size, hidden_size], last_layer_act='ReLU')
self.pert_fuse = MLP([hidden_size, hidden_size, hidden_size], last_layer_act='ReLU')
# gene co-expression GNN
self.G_coexpress = args['G_coexpress'].to(args['device'])
self.G_coexpress_weight = args['G_coexpress_weight'].to(args['device'])
self.emb_pos = nn.Embedding(self.num_genes, hidden_size, max_norm=True)
self.layers_emb_pos = torch.nn.ModuleList()
for i in range(1, self.num_layers_gene_pos + 1):
self.layers_emb_pos.append(SGConv(hidden_size, hidden_size, 1))
### perturbation gene ontology GNN
self.G_sim = args['G_go'].to(args['device'])
self.G_sim_weight = args['G_go_weight'].to(args['device'])
self.sim_layers = torch.nn.ModuleList()
for i in range(1, self.num_layers + 1):
self.sim_layers.append(SGConv(hidden_size, hidden_size, 1))
# decoder shared MLP
self.recovery_w = MLP([hidden_size, hidden_size*2, hidden_size], last_layer_act='linear')
# gene specific decoder
self.indv_w1 = nn.Parameter(torch.rand(self.num_genes,
hidden_size, 1))
self.indv_b1 = nn.Parameter(torch.rand(self.num_genes, 1))
self.act = nn.ReLU()
nn.init.xavier_normal_(self.indv_w1)
nn.init.xavier_normal_(self.indv_b1)
# Cross gene MLP
self.cross_gene_state = MLP([self.num_genes, hidden_size,
hidden_size])
# final gene specific decoder
self.indv_w2 = nn.Parameter(torch.rand(1, self.num_genes,
hidden_size+1))
self.indv_b2 = nn.Parameter(torch.rand(1, self.num_genes))
nn.init.xavier_normal_(self.indv_w2)
nn.init.xavier_normal_(self.indv_b2)
# batchnorms
self.bn_emb = nn.BatchNorm1d(hidden_size)
self.bn_pert_base = nn.BatchNorm1d(hidden_size)
self.bn_pert_base_trans = nn.BatchNorm1d(hidden_size)
# uncertainty mode
if self.uncertainty:
self.uncertainty_w = MLP([hidden_size, hidden_size*2, hidden_size, 1], last_layer_act='linear')
def forward(self, data):
"""
Forward pass of the model
"""
x, pert_idx = data.x, data.pert_idx
if self.no_perturb:
out = x.reshape(-1,1)
out = torch.split(torch.flatten(out), self.num_genes)
return torch.stack(out)
else:
num_graphs = len(data.batch.unique())
## get base gene embeddings
emb = self.gene_emb(torch.LongTensor(list(range(self.num_genes))).repeat(num_graphs, ).to(self.args['device']))
emb = self.bn_emb(emb)
base_emb = self.emb_trans(emb)
pos_emb = self.emb_pos(torch.LongTensor(list(range(self.num_genes))).repeat(num_graphs, ).to(self.args['device']))
for idx, layer in enumerate(self.layers_emb_pos):
pos_emb = layer(pos_emb, self.G_coexpress, self.G_coexpress_weight)
if idx < len(self.layers_emb_pos) - 1:
pos_emb = pos_emb.relu()
base_emb = base_emb + 0.2 * pos_emb
base_emb = self.emb_trans_v2(base_emb)
## get perturbation index and embeddings
pert_index = []
for idx, i in enumerate(pert_idx):
for j in i:
if j != -1:
pert_index.append([idx, j])
pert_index = torch.tensor(pert_index).T
pert_global_emb = self.pert_emb(torch.LongTensor(list(range(self.num_perts))).to(self.args['device']))
## augment global perturbation embedding with GNN
for idx, layer in enumerate(self.sim_layers):
pert_global_emb = layer(pert_global_emb, self.G_sim, self.G_sim_weight)
if idx < self.num_layers - 1:
pert_global_emb = pert_global_emb.relu()
## add global perturbation embedding to each gene in each cell in the batch
base_emb = base_emb.reshape(num_graphs, self.num_genes, -1)
if pert_index.shape[0] != 0:
### in case all samples in the batch are controls, then there is no indexing for pert_index.
pert_track = {}
for i, j in enumerate(pert_index[0]):
if j.item() in pert_track:
pert_track[j.item()] = pert_track[j.item()] + pert_global_emb[pert_index[1][i]]
else:
pert_track[j.item()] = pert_global_emb[pert_index[1][i]]
if len(list(pert_track.values())) > 0:
if len(list(pert_track.values())) == 1:
# circumvent when batch size = 1 with single perturbation and cannot feed into MLP
emb_total = self.pert_fuse(torch.stack(list(pert_track.values()) * 2))
else:
emb_total = self.pert_fuse(torch.stack(list(pert_track.values())))
for idx, j in enumerate(pert_track.keys()):
base_emb[j] = base_emb[j] + emb_total[idx]
base_emb = base_emb.reshape(num_graphs * self.num_genes, -1)
base_emb = self.bn_pert_base(base_emb)
## apply the first MLP
base_emb = self.transform(base_emb)
out = self.recovery_w(base_emb)
out = out.reshape(num_graphs, self.num_genes, -1)
out = out.unsqueeze(-1) * self.indv_w1
w = torch.sum(out, axis = 2)
out = w + self.indv_b1
# Cross gene
cross_gene_embed = self.cross_gene_state(out.reshape(num_graphs, self.num_genes, -1).squeeze(2))
cross_gene_embed = cross_gene_embed.repeat(1, self.num_genes)
cross_gene_embed = cross_gene_embed.reshape([num_graphs,self.num_genes, -1])
cross_gene_out = torch.cat([out, cross_gene_embed], 2)
cross_gene_out = cross_gene_out * self.indv_w2
cross_gene_out = torch.sum(cross_gene_out, axis=2)
out = cross_gene_out + self.indv_b2
out = out.reshape(num_graphs * self.num_genes, -1) + x.reshape(-1,1)
out = torch.split(torch.flatten(out), self.num_genes)
## uncertainty head
if self.uncertainty:
out_logvar = self.uncertainty_w(base_emb)
out_logvar = torch.split(torch.flatten(out_logvar), self.num_genes)
return torch.stack(out), torch.stack(out_logvar)
return torch.stack(out)
class GEARS:
"""
GEARS base model class
"""
def __init__(self, pert_data,
device = 'cuda',
weight_bias_track = True,
proj_name = 'GEARS',
exp_name = 'GEARS'):
self.weight_bias_track = weight_bias_track
if self.weight_bias_track:
import wandb
wandb.init(project=proj_name, name=exp_name)
self.wandb = wandb
else:
self.wandb = None
self.device = device
self.config = None
self.dataloader = pert_data.dataloader
self.adata = pert_data.adata
self.node_map = pert_data.node_map
self.node_map_pert = pert_data.node_map_pert
self.data_path = pert_data.data_path
self.dataset_name = pert_data.dataset_name
self.split = pert_data.split
self.seed = pert_data.seed
self.train_gene_set_size = pert_data.train_gene_set_size
self.set2conditions = pert_data.set2conditions
self.subgroup = pert_data.subgroup
self.gene_list = pert_data.gene_names.values.tolist()
self.pert_list = pert_data.pert_names.tolist()
self.num_genes = len(self.gene_list)
self.num_perts = len(self.pert_list)
self.default_pert_graph = pert_data.default_pert_graph
self.saved_pred = {}
self.saved_logvar_sum = {}
self.ctrl_expression = torch.tensor(
np.mean(self.adata.X[self.adata.obs['condition'].values == 'ctrl'],
axis=0)).reshape(-1, ).to(self.device)
pert_full_id2pert = dict(self.adata.obs[['condition_name', 'condition']].values)
self.dict_filter = {pert_full_id2pert[i]: j for i, j in
self.adata.uns['non_zeros_gene_idx'].items() if
i in pert_full_id2pert}
self.ctrl_adata = self.adata[self.adata.obs['condition'] == 'ctrl']
gene_dict = {g:i for i,g in enumerate(self.gene_list)}
self.pert2gene = {p: gene_dict[pert] for p, pert in
enumerate(self.pert_list) if pert in self.gene_list}
def model_initialize(self, hidden_size = 64,
num_go_gnn_layers = 1,
num_gene_gnn_layers = 1,
decoder_hidden_size = 16,
num_similar_genes_go_graph = 20,
num_similar_genes_co_express_graph = 20,
coexpress_threshold = 0.4,
uncertainty = False,
uncertainty_reg = 1,
direction_lambda = 1e-1,
G_go = None,
G_go_weight = None,
G_coexpress = None,
G_coexpress_weight = None,
no_perturb = False,
**kwargs
):
self.config = {'hidden_size': hidden_size,
'num_go_gnn_layers' : num_go_gnn_layers,
'num_gene_gnn_layers' : num_gene_gnn_layers,
'decoder_hidden_size' : decoder_hidden_size,
'num_similar_genes_go_graph' : num_similar_genes_go_graph,
'num_similar_genes_co_express_graph' : num_similar_genes_co_express_graph,
'coexpress_threshold': coexpress_threshold,
'uncertainty' : uncertainty,
'uncertainty_reg' : uncertainty_reg,
'direction_lambda' : direction_lambda,
'G_go': G_go,
'G_go_weight': G_go_weight,
'G_coexpress': G_coexpress,
'G_coexpress_weight': G_coexpress_weight,
'device': self.device,
'num_genes': self.num_genes,
'num_perts': self.num_perts,
'no_perturb': no_perturb
}
if self.wandb:
self.wandb.config.update(self.config)
if self.config['G_coexpress'] is None:
## calculating co expression similarity graph
edge_list = get_similarity_network(network_type='co-express',
adata=self.adata,
threshold=coexpress_threshold,
k=num_similar_genes_co_express_graph,
data_path=self.data_path,
data_name=self.dataset_name,
split=self.split, seed=self.seed,
train_gene_set_size=self.train_gene_set_size,
set2conditions=self.set2conditions)
sim_network = GeneSimNetwork(edge_list, self.gene_list, node_map = self.node_map)
self.config['G_coexpress'] = sim_network.edge_index
self.config['G_coexpress_weight'] = sim_network.edge_weight
if self.config['G_go'] is None:
## calculating gene ontology similarity graph
edge_list = get_similarity_network(network_type='go',
adata=self.adata,
threshold=coexpress_threshold,
k=num_similar_genes_go_graph,
pert_list=self.pert_list,
data_path=self.data_path,
data_name=self.dataset_name,
split=self.split, seed=self.seed,
train_gene_set_size=self.train_gene_set_size,
set2conditions=self.set2conditions,
default_pert_graph=self.default_pert_graph)
sim_network = GeneSimNetwork(edge_list, self.pert_list, node_map = self.node_map_pert)
self.config['G_go'] = sim_network.edge_index
self.config['G_go_weight'] = sim_network.edge_weight
self.model = GEARS_Model(self.config).to(self.device)
self.best_model = deepcopy(self.model)
def load_pretrained(self, path):
with open(os.path.join(path, 'config.pkl'), 'rb') as f:
config = pickle.load(f)
del config['device'], config['num_genes'], config['num_perts']
self.model_initialize(**config)
self.config = config
state_dict = torch.load(os.path.join(path, 'model.pt'), map_location = torch.device('cpu'))
if next(iter(state_dict))[:7] == 'module.':
# the pretrained model is from data-parallel module
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
state_dict = new_state_dict
self.model.load_state_dict(state_dict)
self.model = self.model.to(self.device)
self.best_model = self.model
def save_model(self, path):
if not os.path.exists(path):
os.mkdir(path)
if self.config is None:
raise ValueError('No model is initialized...')
with open(os.path.join(path, 'config.pkl'), 'wb') as f:
pickle.dump(self.config, f)
torch.save(self.best_model.state_dict(), os.path.join(path, 'model.pt'))
def train(self, epochs = 20,
lr = 1e-3,
weight_decay = 5e-4
):
"""
Train the model
Parameters
----------
epochs: int
number of epochs to train
lr: float
learning rate
weight_decay: float
weight decay
Returns
-------
None
"""
train_loader = self.dataloader['train_loader']
val_loader = self.dataloader['val_loader']
self.model = self.model.to(self.device)
best_model = deepcopy(self.model)
optimizer = optim.Adam(self.model.parameters(), lr=lr, weight_decay = weight_decay)
scheduler = StepLR(optimizer, step_size=1, gamma=0.5)
min_val = np.inf
print_sys('Start Training...')
for epoch in range(epochs):
self.model.train()
for step, batch in enumerate(train_loader):
batch.to(self.device)
optimizer.zero_grad()
y = batch.y
if self.config['uncertainty']:
pred, logvar = self.model(batch)
loss = uncertainty_loss_fct(pred, logvar, y, batch.pert,
reg = self.config['uncertainty_reg'],
ctrl = self.ctrl_expression,
dict_filter = self.dict_filter,
direction_lambda = self.config['direction_lambda'])
else:
pred = self.model(batch)
loss = loss_fct(pred, y, batch.pert,
ctrl = self.ctrl_expression,
dict_filter = self.dict_filter,
direction_lambda = self.config['direction_lambda'])
loss.backward()
nn.utils.clip_grad_value_(self.model.parameters(), clip_value=1.0)
optimizer.step()
if self.wandb:
self.wandb.log({'training_loss': loss.item()})
if step % 50 == 0:
log = "Epoch {} Step {} Train Loss: {:.4f}"
print_sys(log.format(epoch + 1, step + 1, loss.item()))
scheduler.step()
# Evaluate model performance on train and val set
train_res = evaluate(train_loader, self.model,
self.config['uncertainty'], self.device)
val_res = evaluate(val_loader, self.model,
self.config['uncertainty'], self.device)
train_metrics, _ = compute_metrics(train_res)
val_metrics, _ = compute_metrics(val_res)
# Print epoch performance
log = "Epoch {}: Train Overall MSE: {:.4f} " \
"Validation Overall MSE: {:.4f}. "
print_sys(log.format(epoch + 1, train_metrics['mse'],
val_metrics['mse']))
# Print epoch performance for DE genes
log = "Train Top 20 DE MSE: {:.4f} " \
"Validation Top 20 DE MSE: {:.4f}. "
print_sys(log.format(train_metrics['mse_de'],
val_metrics['mse_de']))
if self.wandb:
metrics = ['mse', 'pearson']
for m in metrics:
self.wandb.log({'train_' + m: train_metrics[m],
'val_'+m: val_metrics[m],
'train_de_' + m: train_metrics[m + '_de'],
'val_de_'+m: val_metrics[m + '_de']})
if val_metrics['mse_de'] < min_val:
min_val = val_metrics['mse_de']
best_model = deepcopy(self.model)
print_sys("Done!")
self.best_model = best_model
if 'test_loader' not in self.dataloader:
print_sys('Done! No test dataloader detected.')
return
# Model testing
test_loader = self.dataloader['test_loader']
print_sys("Start Testing...")
test_res = evaluate(test_loader, self.best_model,
self.config['uncertainty'], self.device)
test_metrics, test_pert_res = compute_metrics(test_res)
log = "Best performing model: Test Top 20 DE MSE: {:.4f}"
print_sys(log.format(test_metrics['mse_de']))
if self.wandb:
metrics = ['mse', 'pearson']
for m in metrics:
self.wandb.log({'test_' + m: test_metrics[m],
'test_de_'+m: test_metrics[m + '_de']
})
print_sys('Done!')
self.test_metrics = test_metrics
def np_pearson_cor(x, y):
xv = x - x.mean(axis=0)
yv = y - y.mean(axis=0)
xvss = (xv * xv).sum(axis=0)
yvss = (yv * yv).sum(axis=0)
result = np.matmul(xv.transpose(), yv) / np.sqrt(np.outer(xvss, yvss))
# bound the values to -1 to 1 in the event of precision issues
return np.maximum(np.minimum(result, 1.0), -1.0)
class GeneSimNetwork():
"""
GeneSimNetwork class
Args:
edge_list (pd.DataFrame): edge list of the network
gene_list (list): list of gene names
node_map (dict): dictionary mapping gene names to node indices
Attributes:
edge_index (torch.Tensor): edge index of the network
edge_weight (torch.Tensor): edge weight of the network
G (nx.DiGraph): networkx graph object
"""
def __init__(self, edge_list, gene_list, node_map):
"""
Initialize GeneSimNetwork class
"""
self.edge_list = edge_list
self.G = nx.from_pandas_edgelist(self.edge_list, source='source',
target='target', edge_attr=['importance'],
create_using=nx.DiGraph())
self.gene_list = gene_list
for n in self.gene_list:
if n not in self.G.nodes():
self.G.add_node(n)
edge_index_ = [(node_map[e[0]], node_map[e[1]]) for e in
self.G.edges]
self.edge_index = torch.tensor(edge_index_, dtype=torch.long).T
#self.edge_weight = torch.Tensor(self.edge_list['importance'].values)
edge_attr = nx.get_edge_attributes(self.G, 'importance')
importance = np.array([edge_attr[e] for e in self.G.edges])
self.edge_weight = torch.Tensor(importance)
def get_GO_edge_list(args):
"""
Get gene ontology edge list
"""
g1, gene2go = args
edge_list = []
for g2 in gene2go.keys():
score = len(gene2go[g1].intersection(gene2go[g2])) / len(
gene2go[g1].union(gene2go[g2]))
if score > 0.1:
edge_list.append((g1, g2, score))
return edge_list
def make_GO(data_path, pert_list, data_name, num_workers=25, save=True):
"""
Creates Gene Ontology graph from a custom set of genes
"""
fname = './data/go_essential_' + data_name + '.csv'
if os.path.exists(fname):
return pd.read_csv(fname)
with open(os.path.join(data_path, 'gene2go_all.pkl'), 'rb') as f:
gene2go = pickle.load(f)
gene2go = {i: gene2go[i] for i in pert_list}
print('Creating custom GO graph, this can take a few minutes')
with Pool(num_workers) as p:
all_edge_list = list(
tqdm(p.imap(get_GO_edge_list, ((g, gene2go) for g in gene2go.keys())),
total=len(gene2go.keys())))
edge_list = []
for i in all_edge_list:
edge_list = edge_list + i
df_edge_list = pd.DataFrame(edge_list).rename(
columns={0: 'source', 1: 'target', 2: 'importance'})
if save:
print('Saving edge_list to file')
df_edge_list.to_csv(fname, index=False)
return df_edge_list
def get_similarity_network(network_type, adata, threshold, k,
data_path, data_name, split, seed, train_gene_set_size,
set2conditions, default_pert_graph=True, pert_list=None):
if network_type == 'co-express':
df_out = get_coexpression_network_from_train(adata, threshold, k,
data_path, data_name, split,
seed, train_gene_set_size,
set2conditions)
elif network_type == 'go':
if default_pert_graph:
server_path = 'https://dataverse.harvard.edu/api/access/datafile/6934319'
#tar_data_download_wrapper(server_path,
#os.path.join(data_path, 'go_essential_all'),
#data_path)
df_jaccard = pd.read_csv(os.path.join(data_path,
'go_essential_all/go_essential_all.csv'))
else:
df_jaccard = make_GO(data_path, pert_list, data_name)
df_out = df_jaccard.groupby('target').apply(lambda x: x.nlargest(k + 1,
['importance'])).reset_index(drop = True)
return df_out
def get_coexpression_network_from_train(adata, threshold, k, data_path,
data_name, split, seed, train_gene_set_size,
set2conditions):
"""
Infer co-expression network from training data
Args:
adata (anndata.AnnData): anndata object
threshold (float): threshold for co-expression
k (int): number of edges to keep
data_path (str): path to data
data_name (str): name of dataset
split (str): split of dataset
seed (int): seed for random number generator
train_gene_set_size (int): size of training gene set
set2conditions (dict): dictionary of perturbations to conditions
"""
fname = os.path.join(os.path.join(data_path, data_name), split + '_' +
str(seed) + '_' + str(train_gene_set_size) + '_' +
str(threshold) + '_' + str(k) +
'_co_expression_network.csv')
if os.path.exists(fname):
return pd.read_csv(fname)
else:
gene_list = [f for f in adata.var.gene_name.values]
idx2gene = dict(zip(range(len(gene_list)), gene_list))
X = adata.X
train_perts = set2conditions['train']
X_tr = X[np.isin(adata.obs.condition, [i for i in train_perts if 'ctrl' in i])]
gene_list = adata.var['gene_name'].values
X_tr = X_tr.toarray()
out = np_pearson_cor(X_tr, X_tr)
out[np.isnan(out)] = 0
out = np.abs(out)
out_sort_idx = np.argsort(out)[:, -(k + 1):]
out_sort_val = np.sort(out)[:, -(k + 1):]
df_g = []
for i in range(out_sort_idx.shape[0]):
target = idx2gene[i]
for j in range(out_sort_idx.shape[1]):
df_g.append((idx2gene[out_sort_idx[i, j]], target, out_sort_val[i, j]))
df_g = [i for i in df_g if i[2] > threshold]
df_co_expression = pd.DataFrame(df_g).rename(columns = {0: 'source',
1: 'target',
2: 'importance'})
df_co_expression.to_csv(fname, index = False)
return df_co_expression
def uncertainty_loss_fct(pred, logvar, y, perts, reg = 0.1, ctrl = None,
direction_lambda = 1e-3, dict_filter = None):
"""
Uncertainty loss function
Args:
pred (torch.tensor): predicted values
logvar (torch.tensor): log variance
y (torch.tensor): true values
perts (list): list of perturbations
reg (float): regularization parameter
ctrl (str): control perturbation
direction_lambda (float): direction loss weight hyperparameter
dict_filter (dict): dictionary of perturbations to conditions
"""
gamma = 2
perts = np.array(perts)
losses = torch.tensor(0.0, requires_grad=True).to(pred.device)
for p in set(perts):
if p!= 'ctrl':
retain_idx = dict_filter[p]
pred_p = pred[np.where(perts==p)[0]][:, retain_idx]
y_p = y[np.where(perts==p)[0]][:, retain_idx]
logvar_p = logvar[np.where(perts==p)[0]][:, retain_idx]
else:
pred_p = pred[np.where(perts==p)[0]]
y_p = y[np.where(perts==p)[0]]
logvar_p = logvar[np.where(perts==p)[0]]
# uncertainty based loss
losses += torch.sum((pred_p - y_p)**(2 + gamma) + reg * torch.exp(
-logvar_p) * (pred_p - y_p)**(2 + gamma))/pred_p.shape[0]/pred_p.shape[1]
# direction loss
if p!= 'ctrl':
losses += torch.sum(direction_lambda *
(torch.sign(y_p - ctrl[retain_idx]) -
torch.sign(pred_p - ctrl[retain_idx]))**2)/\
pred_p.shape[0]/pred_p.shape[1]
else:
losses += torch.sum(direction_lambda *
(torch.sign(y_p - ctrl) -
torch.sign(pred_p - ctrl))**2)/\
pred_p.shape[0]/pred_p.shape[1]
return losses/(len(set(perts)))
def loss_fct(pred, y, perts, ctrl = None, direction_lambda = 1e-3, dict_filter = None):
"""
Main MSE Loss function, includes direction loss
Args:
pred (torch.tensor): predicted values
y (torch.tensor): true values
perts (list): list of perturbations
ctrl (str): control perturbation
direction_lambda (float): direction loss weight hyperparameter
dict_filter (dict): dictionary of perturbations to conditions
"""
gamma = 2
mse_p = torch.nn.MSELoss()
perts = np.array(perts)
losses = torch.tensor(0.0, requires_grad=True).to(pred.device)
for p in set(perts):
pert_idx = np.where(perts == p)[0]
# during training, we remove the all zero genes into calculation of loss.
# this gives a cleaner direction loss. empirically, the performance stays the same.
if p!= 'ctrl':
retain_idx = dict_filter[p]
pred_p = pred[pert_idx][:, retain_idx]
y_p = y[pert_idx][:, retain_idx]
else:
pred_p = pred[pert_idx]
y_p = y[pert_idx]
losses = losses + torch.sum((pred_p - y_p)**(2 + gamma))/pred_p.shape[0]/pred_p.shape[1]
## direction loss
if (p!= 'ctrl'):
losses = losses + torch.sum(direction_lambda *
(torch.sign(y_p - ctrl[retain_idx]) -
torch.sign(pred_p - ctrl[retain_idx]))**2)/\
pred_p.shape[0]/pred_p.shape[1]
else:
losses = losses + torch.sum(direction_lambda * (torch.sign(y_p - ctrl) -
torch.sign(pred_p - ctrl))**2)/\
pred_p.shape[0]/pred_p.shape[1]
return losses/(len(set(perts)))
def evaluate(loader, model, uncertainty, device):
"""
Run model in inference mode using a given data loader
"""
model.eval()
model.to(device)
pert_cat = []
pred = []
truth = []
pred_de = []
truth_de = []
results = {}
logvar = []
for itr, batch in enumerate(loader):
batch.to(device)
pert_cat.extend(batch.pert)
with torch.no_grad():
if uncertainty:
p, unc = model(batch)
logvar.extend(unc.cpu())
else:
p = model(batch)
t = batch.y
pred.extend(p.cpu())
truth.extend(t.cpu())
# Differentially expressed genes
for itr, de_idx in enumerate(batch.de_idx):
pred_de.append(p[itr, de_idx])
truth_de.append(t[itr, de_idx])
# all genes
results['pert_cat'] = np.array(pert_cat)
pred = torch.stack(pred)
truth = torch.stack(truth)
results['pred']= pred.detach().cpu().numpy()
results['truth']= truth.detach().cpu().numpy()
pred_de = torch.stack(pred_de)
truth_de = torch.stack(truth_de)
results['pred_de']= pred_de.detach().cpu().numpy()
results['truth_de']= truth_de.detach().cpu().numpy()
if uncertainty:
results['logvar'] = torch.stack(logvar).detach().cpu().numpy()
return results
def compute_metrics(results):
"""
Given results from a model run and the ground truth, compute metrics
"""
metrics = {}
metrics_pert = {}
metric2fct = {
'mse': mse,
'pearson': pearsonr
}
for m in metric2fct.keys():
metrics[m] = []
metrics[m + '_de'] = []
for pert in np.unique(results['pert_cat']):
metrics_pert[pert] = {}
p_idx = np.where(results['pert_cat'] == pert)[0]
for m, fct in metric2fct.items():
if m == 'pearson':
val = fct(results['pred'][p_idx].mean(0), results['truth'][p_idx].mean(0))[0]
if np.isnan(val):
val = 0
else:
val = fct(results['pred'][p_idx].mean(0), results['truth'][p_idx].mean(0))
metrics_pert[pert][m] = val
metrics[m].append(metrics_pert[pert][m])
if pert != 'ctrl':
for m, fct in metric2fct.items():
if m == 'pearson':
val = fct(results['pred_de'][p_idx].mean(0), results['truth_de'][p_idx].mean(0))[0]
if np.isnan(val):
val = 0
else:
val = fct(results['pred_de'][p_idx].mean(0), results['truth_de'][p_idx].mean(0))
metrics_pert[pert][m + '_de'] = val
metrics[m + '_de'].append(metrics_pert[pert][m + '_de'])
else:
for m, fct in metric2fct.items():
metrics_pert[pert][m + '_de'] = 0
for m in metric2fct.keys():
metrics[m] = np.mean(metrics[m])
metrics[m + '_de'] = np.mean(metrics[m + '_de'])
return metrics, metrics_pert
def filter_pert_in_go(condition, pert_names):
"""
Filter perturbations in GO graph
Args:
condition (str): whether condition is 'ctrl' or not
pert_names (list): list of perturbations
"""
if condition == 'ctrl':
return True
else:
cond1 = condition.split('+')[0]
cond2 = condition.split('+')[1]
num_ctrl = (cond1 == 'ctrl') + (cond2 == 'ctrl')
num_in_perts = (cond1 in pert_names) + (cond2 in pert_names)
if num_ctrl + num_in_perts == 2:
return True
else:
return False
class PertData:
def __init__(self, data_path,
gene_set_path=None,
default_pert_graph=True):
# Dataset/Dataloader attributes
self.data_path = data_path
self.default_pert_graph = default_pert_graph
self.gene_set_path = gene_set_path
self.dataset_name = None
self.dataset_path = None
self.adata = None
self.dataset_processed = None
self.ctrl_adata = None
self.gene_names = []
self.node_map = {}
# Split attributes
self.split = None
self.seed = None
self.subgroup = None
self.train_gene_set_size = None
if not os.path.exists(self.data_path):
os.mkdir(self.data_path)
server_path = 'https://dataverse.harvard.edu/api/access/datafile/6153417'
with open(os.path.join(self.data_path, 'gene2go_all.pkl'), 'rb') as f:
self.gene2go = pickle.load(f)
def set_pert_genes(self):
"""
Set the list of genes that can be perturbed and are to be included in
perturbation graph
"""
if self.gene_set_path is not None:
# If gene set specified for perturbation graph, use that
path_ = self.gene_set_path
self.default_pert_graph = False
with open(path_, 'rb') as f:
essential_genes = pickle.load(f)
elif self.default_pert_graph is False:
# Use a smaller perturbation graph
all_pert_genes = get_genes_from_perts(self.adata.obs['condition'])
essential_genes = list(self.adata.var['gene_name'].values)
essential_genes += all_pert_genes
else:
# Otherwise, use a large set of genes to create perturbation graph
server_path = 'https://dataverse.harvard.edu/api/access/datafile/6934320'
path_ = os.path.join(self.data_path,
'essential_all_data_pert_genes.pkl')
with open(path_, 'rb') as f:
essential_genes = pickle.load(f)
gene2go = {i: self.gene2go[i] for i in essential_genes if i in self.gene2go}
self.pert_names = np.unique(list(gene2go.keys()))
self.node_map_pert = {x: it for it, x in enumerate(self.pert_names)}
def load(self, data_name = None, data_path = None):
if data_name in ['norman', 'adamson', 'dixit',
'replogle_k562_essential',
'replogle_rpe1_essential']:
data_path = os.path.join(self.data_path, data_name)
#zip_data_download_wrapper(url, data_path, self.data_path)
self.dataset_name = data_path.split('/')[-1]
self.dataset_path = data_path
adata_path = os.path.join(data_path, 'perturb_processed.h5ad')
self.adata = sc.read_h5ad(adata_path)
elif os.path.exists(data_path):
adata_path = os.path.join(data_path, 'perturb_processed.h5ad')
self.adata = sc.read_h5ad(adata_path)
self.dataset_name = data_path.split('/')[-1]
self.dataset_path = data_path
else:
raise ValueError("data attribute is either norman, adamson, dixit "
"replogle_k562 or replogle_rpe1 "
"or a path to an h5ad file")
self.set_pert_genes()
print_sys('These perturbations are not in the GO graph and their '
'perturbation can thus not be predicted')
not_in_go_pert = np.array(self.adata.obs[
self.adata.obs.condition.apply(
lambda x:not filter_pert_in_go(x,
self.pert_names))].condition.unique())
print_sys(not_in_go_pert)
filter_go = self.adata.obs[self.adata.obs.condition.apply(
lambda x: filter_pert_in_go(x, self.pert_names))]
self.adata = self.adata[filter_go.index.values, :]
pyg_path = os.path.join(data_path, 'data_pyg')
if not os.path.exists(pyg_path):
os.mkdir(pyg_path)
dataset_fname = os.path.join(pyg_path, 'cell_graphs.pkl')
if os.path.isfile(dataset_fname):
print_sys("Local copy of pyg dataset is detected. Loading...")
self.dataset_processed = pickle.load(open(dataset_fname, "rb"))
print_sys("Done!")
else:
self.ctrl_adata = self.adata[self.adata.obs['condition'] == 'ctrl']
self.gene_names = self.adata.var.gene_name
print_sys("Creating pyg object for each cell in the data...")
self.create_dataset_file()
print_sys("Saving new dataset pyg object at " + dataset_fname)
pickle.dump(self.dataset_processed, open(dataset_fname, "wb"))
print_sys("Done!")
def prepare_split(self, split = 'simulation',
seed = 1,
train_gene_set_size = 0.75,
combo_seen2_train_frac = 0.75,
combo_single_split_test_set_fraction = 0.1,
test_perts = None,
only_test_set_perts = False,
test_pert_genes = None,
split_dict_path=None):
"""
Prepare splits for training and testing
Parameters
----------
split: str
Type of split to use. Currently, we support 'simulation',
'simulation_single', 'combo_seen0', 'combo_seen1', 'combo_seen2',
'single', 'no_test', 'no_split', 'custom'
seed: int
Random seed
train_gene_set_size: float
Fraction of genes to use for training
combo_seen2_train_frac: float
Fraction of combo seen2 perturbations to use for training
combo_single_split_test_set_fraction: float
Fraction of combo single perturbations to use for testing
test_perts: list
List of perturbations to use for testing
only_test_set_perts: bool
If True, only use test set perturbations for testing
test_pert_genes: list
List of genes to use for testing
split_dict_path: str
Path to dictionary used for custom split. Sample format:
{'train': [X, Y], 'val': [P, Q], 'test': [Z]}
Returns
-------
None
"""
available_splits = ['simulation', 'simulation_single', 'combo_seen0',
'combo_seen1', 'combo_seen2', 'single', 'no_test',
'no_split', 'custom']
if split not in available_splits:
raise ValueError('currently, we only support ' + ','.join(available_splits))
self.split = split
self.seed = seed
self.subgroup = None
if split == 'custom':
try:
with open(split_dict_path, 'rb') as f:
self.set2conditions = pickle.load(f)
except:
raise ValueError('Please set split_dict_path for custom split')
return
self.train_gene_set_size = train_gene_set_size
split_folder = os.path.join(self.dataset_path, 'splits')
if not os.path.exists(split_folder):
os.mkdir(split_folder)
split_file = self.dataset_name + '_' + split + '_' + str(seed) + '_' \
+ str(train_gene_set_size) + '.pkl'
split_path = os.path.join(split_folder, split_file)
if test_perts:
split_path = split_path[:-4] + '_' + test_perts + '.pkl'
if os.path.exists(split_path):
print('here1')
print_sys("Local copy of split is detected. Loading...")
set2conditions = pickle.load(open(split_path, "rb"))
if split == 'simulation':
subgroup_path = split_path[:-4] + '_subgroup.pkl'
subgroup = pickle.load(open(subgroup_path, "rb"))
self.subgroup = subgroup
else:
print_sys("Creating new splits....")
if test_perts:
test_perts = test_perts.split('_')
if split in ['simulation', 'simulation_single']:
# simulation split
DS = DataSplitter(self.adata, split_type=split)
adata, subgroup = DS.split_data(train_gene_set_size = train_gene_set_size,
combo_seen2_train_frac = combo_seen2_train_frac,
seed=seed,
test_perts = test_perts,
only_test_set_perts = only_test_set_perts
)
subgroup_path = split_path[:-4] + '_subgroup.pkl'
pickle.dump(subgroup, open(subgroup_path, "wb"))
self.subgroup = subgroup
elif split[:5] == 'combo':
# combo perturbation
split_type = 'combo'
seen = int(split[-1])
if test_pert_genes:
test_pert_genes = test_pert_genes.split('_')
DS = DataSplitter(self.adata, split_type=split_type, seen=int(seen))
adata = DS.split_data(test_size=combo_single_split_test_set_fraction,
test_perts=test_perts,
test_pert_genes=test_pert_genes,
seed=seed)
elif split == 'single':
# single perturbation
DS = DataSplitter(self.adata, split_type=split)
adata = DS.split_data(test_size=combo_single_split_test_set_fraction,
seed=seed)
elif split == 'no_test':
# no test set
DS = DataSplitter(self.adata, split_type=split)
adata = DS.split_data(seed=seed)
elif split == 'no_split':
# no split
adata = self.adata
adata.obs['split'] = 'test'
set2conditions = dict(adata.obs.groupby('split').agg({'condition':
lambda x: x}).condition)
set2conditions = {i: j.unique().tolist() for i,j in set2conditions.items()}
pickle.dump(set2conditions, open(split_path, "wb"))
print_sys("Saving new splits at " + split_path)
self.set2conditions = set2conditions
if split == 'simulation':
print_sys('Simulation split test composition:')
for i,j in subgroup['test_subgroup'].items():
print_sys(i + ':' + str(len(j)))
print_sys("Done!")
def get_dataloader(self, batch_size, test_batch_size = None):
"""
Get dataloaders for training and testing
Parameters
----------
batch_size: int
Batch size for training
test_batch_size: int
Batch size for testing
Returns
-------
dict
Dictionary of dataloaders
"""
if test_batch_size is None:
test_batch_size = batch_size
self.node_map = {x: it for it, x in enumerate(self.adata.var.gene_name)}
self.gene_names = self.adata.var.gene_name
# Create cell graphs
cell_graphs = {}
if self.split == 'no_split':
i = 'test'
cell_graphs[i] = []
for p in self.set2conditions[i]:
if p != 'ctrl':
cell_graphs[i].extend(self.dataset_processed[p])
print_sys("Creating dataloaders....")
# Set up dataloaders
test_loader = DataLoader(cell_graphs['test'],
batch_size=batch_size, shuffle=False)
print_sys("Dataloaders created...")
return {'test_loader': test_loader}
else:
if self.split =='no_test':
splits = ['train','val']
else:
splits = ['train','val','test']
for i in splits:
cell_graphs[i] = []
for p in self.set2conditions[i]:
cell_graphs[i].extend(self.dataset_processed[p])
print_sys("Creating dataloaders....")
# Set up dataloaders
train_loader = DataLoader(cell_graphs['train'],
batch_size=batch_size, shuffle=True, drop_last = True)
val_loader = DataLoader(cell_graphs['val'],
batch_size=batch_size, shuffle=True)
if self.split !='no_test':
test_loader = DataLoader(cell_graphs['test'],
batch_size=batch_size, shuffle=False)
self.dataloader = {'train_loader': train_loader,
'val_loader': val_loader,
'test_loader': test_loader}
else:
self.dataloader = {'train_loader': train_loader,
'val_loader': val_loader}
print_sys("Done!")
def get_pert_idx(self, pert_category):
"""
Get perturbation index for a given perturbation category
Parameters
----------
pert_category: str
Perturbation category
Returns
-------
list
List of perturbation indices
"""
try:
pert_idx = [np.where(p == self.pert_names)[0][0]
for p in pert_category.split('+')
if p != 'ctrl']
except:
print(pert_category)
pert_idx = None
return pert_idx
def create_cell_graph(self, X, y, de_idx, pert, pert_idx=None):
"""
Create a cell graph from a given cell
Parameters
----------
X: np.ndarray
Gene expression matrix
y: np.ndarray
Label vector
de_idx: np.ndarray
DE gene indices
pert: str
Perturbation category
pert_idx: list
List of perturbation indices
Returns
-------
torch_geometric.data.Data
Cell graph to be used in dataloader
"""
feature_mat = torch.Tensor(X).T
if pert_idx is None:
pert_idx = [-1]
return Data(x=feature_mat, pert_idx=pert_idx,
y=torch.Tensor(y), de_idx=de_idx, pert=pert)
def create_cell_graph_dataset(self, split_adata, pert_category,
num_samples=1):
"""
Combine cell graphs to create a dataset of cell graphs
Parameters
----------
split_adata: anndata.AnnData
Annotated data matrix
pert_category: str
Perturbation category
num_samples: int
Number of samples to create per perturbed cell (i.e. number of
control cells to map to each perturbed cell)
Returns
-------
list
List of cell graphs
"""
num_de_genes = 20
adata_ = split_adata[split_adata.obs['condition'] == pert_category]
if 'rank_genes_groups_cov_all' in adata_.uns:
de_genes = adata_.uns['rank_genes_groups_cov_all']
de = True
else:
de = False
num_de_genes = 1
Xs = []
ys = []
# When considering a non-control perturbation
if pert_category != 'ctrl':
# Get the indices of applied perturbation
pert_idx = self.get_pert_idx(pert_category)
# Store list of genes that are most differentially expressed for testing
pert_de_category = adata_.obs['condition_name'][0]
if de:
de_idx = np.where(adata_.var_names.isin(
np.array(de_genes[pert_de_category][:num_de_genes])))[0]
else:
de_idx = [-1] * num_de_genes
for cell_z in adata_.X:
# Use samples from control as basal expression
ctrl_samples = self.ctrl_adata[np.random.randint(0,
len(self.ctrl_adata), num_samples), :]
for c in ctrl_samples.X:
Xs.append(c)
ys.append(cell_z)
# When considering a control perturbation
else:
pert_idx = None
de_idx = [-1] * num_de_genes
for cell_z in adata_.X:
Xs.append(cell_z)
ys.append(cell_z)
# Create cell graphs
cell_graphs = []
for X, y in zip(Xs, ys):
cell_graphs.append(self.create_cell_graph(X.toarray(),
y.toarray(), de_idx, pert_category, pert_idx))
return cell_graphs
def create_dataset_file(self):
"""
Create dataset file for each perturbation condition
"""
print_sys("Creating dataset file...")
self.dataset_processed = {}
for p in tqdm(self.adata.obs['condition'].unique()):
self.dataset_processed[p] = self.create_cell_graph_dataset(self.adata, p)
print_sys("Done!")
def main(data_path='./data', out_dir='./saved_models', device='cuda:0'):
os.makedirs(data_path, exist_ok=True)
os.makedirs(out_dir, exist_ok=True)
os.environ["WANDB_SILENT"] = "true"
os.environ["WANDB_ERROR_REPORTING"] = "false"
print_sys("=== data loading ===")
pert_data = PertData(data_path)
pert_data.load(data_name='norman')
pert_data.prepare_split(split='simulation', seed=1)
pert_data.get_dataloader(batch_size=32, test_batch_size=128)
print_sys("\n=== model traing ===")
gears_model = GEARS(
pert_data,
device=device,
weight_bias_track=True,
proj_name='GEARS',
exp_name='gears_norman'
)
gears_model.model_initialize(hidden_size = 64)
gears_model.train(epochs=args.epochs, lr=1e-3)
gears_model.save_model(os.path.join(out_dir, 'norman_full_model'))
print_sys(f"model saved to {out_dir}")
gears_model.load_pretrained(os.path.join(out_dir, 'norman_full_model'))
final_infos = {
"Gears":{
"means":{
"Test Top 20 DE MSE": float(gears_model.test_metrics['mse_de'].item())
}
}
}
with open(os.path.join(out_dir, 'final_info.json'), 'w') as f:
json.dump(final_infos, f, indent=4)
print_sys("final info saved.")
def print_sys(s):
"""system print
Args:
s (str): the string to print
"""
print(s, flush = True, file = sys.stderr)
log_path = os.path.join(args.out_dir, args.log_file)
logging.basicConfig(
filename=log_path,
level=logging.INFO,
)
logger = logging.getLogger()
logger.info(s)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', type=str, default='./data')
parser.add_argument('--out_dir', type=str, default='run_1')
parser.add_argument('--device', type=str, default='cuda:0')
parser.add_argument('--log_file', type=str, default="training_ds.log")
parser.add_argument('--epochs', type=int, default=20)
args = parser.parse_args()
try:
main(
data_path=args.data_path,
out_dir=args.out_dir,
device=args.device
)
except Exception as e:
print("Origin error in main process:", flush=True)
traceback.print_exc(file=open(os.path.join(args.out_dir, "traceback.log"), "w"))
raise