|
from torch_geometric.data import HeteroData |
|
import os |
|
import json |
|
import yaml |
|
import pathlib |
|
from src.utils import count_parameters, AVGMeter, Reporter, Timer |
|
from src.oven import Oven |
|
from loguru import logger |
|
import torch.distributed as dist |
|
from src.utils import set_random_seed, setup_distributed, setup_default_logging_wt_dir |
|
import pprint |
|
import torch |
|
import torch.nn as nn |
|
import argparse |
|
from torch.nn.utils import clip_grad_norm_ |
|
import numpy as np |
|
from torch.optim.lr_scheduler import ReduceLROnPlateau |
|
from torch_geometric.nn import Linear, ResGatedGraphConv, HeteroConv |
|
import torch.nn.functional as F |
|
from scipy.sparse.csgraph import floyd_warshall |
|
from metrics import RMSE |
|
import traceback |
|
def calculate_gpri(batch_original, batch_perturbed, edge_scores, k=10): |
|
""" |
|
Calculate Graph Perturbation Robustness Index (GPRI) |
|
|
|
Args: |
|
batch_original: Original batch data |
|
batch_perturbed: Perturbed batch data |
|
edge_scores: Edge importance scores |
|
k: Number of top connections to consider |
|
|
|
Returns: |
|
gpri: Graph Perturbation Robustness Index |
|
""" |
|
gpri_values = [] |
|
|
|
for edge_type in edge_scores: |
|
|
|
scores_orig = edge_scores[edge_type] |
|
if len(scores_orig) == 0: |
|
continue |
|
|
|
_, top_indices_orig = torch.topk(scores_orig, min(k, len(scores_orig))) |
|
top_edges_orig = set(top_indices_orig.cpu().numpy()) |
|
|
|
|
|
if edge_type in batch_perturbed.edge_index_dict: |
|
edge_index_perturbed = batch_perturbed.edge_index_dict[edge_type] |
|
|
|
|
|
intersection_size = len(top_edges_orig.intersection(set(range(edge_index_perturbed.size(1))))) |
|
|
|
|
|
if len(top_edges_orig) > 0: |
|
gpri_values.append(intersection_size / len(top_edges_orig)) |
|
|
|
|
|
if len(gpri_values) > 0: |
|
return sum(gpri_values) / len(gpri_values) |
|
else: |
|
return 0.0 |
|
|
|
def vm_va_matrix(batch: HeteroData, mode="train"): |
|
Vm, Va, P_net, Q_net, Gs, Bs = 0, 1, 2, 3, 4, 5 |
|
Ybus = create_Ybus(batch) |
|
delta_p, delta_q = deltapq_loss(batch, Ybus) |
|
|
|
|
|
matrix = { |
|
f"{mode}/PQ_Vm_rmse": RMSE(batch['PQ'].x[:, Vm], batch['PQ'].y[:, Vm]), |
|
f"{mode}/PQ_Va_rmse": RMSE(batch['PQ'].x[:, Va], batch['PQ'].y[:, Va]), |
|
f"{mode}/PV_Va_rmse": RMSE(batch['PV'].x[:, Va], batch['PV'].y[:, Va]), |
|
f"{mode}/delta_p": delta_p.abs().mean().item(), |
|
f"{mode}/delta_q": delta_q.abs().mean().item(), |
|
} |
|
|
|
|
|
if hasattr(batch, 'edge_scores') and batch.edge_scores: |
|
try: |
|
|
|
batch_perturbed = batch.clone() |
|
|
|
|
|
for edge_type, edge_attr in batch_perturbed.edge_attr_dict.items(): |
|
if edge_attr is not None and len(edge_attr) > 0: |
|
noise = torch.randn_like(edge_attr) * 0.05 * edge_attr.abs() |
|
batch_perturbed[edge_type].edge_attr = edge_attr + noise |
|
|
|
|
|
gpri = calculate_gpri(batch, batch_perturbed, batch.edge_scores) |
|
matrix[f"{mode}/GPRI"] = gpri |
|
except Exception as e: |
|
|
|
print(f"GPRI calculation failed: {e}") |
|
|
|
return matrix |
|
|
|
def bi_deltapq_loss(graph_data: HeteroData, need_clone=False, |
|
filt_type=True, aggr='abs'): |
|
"""compute deltapq loss |
|
|
|
Args: |
|
graph_data (Hetero Graph): Batched Hetero graph data |
|
preds (dict): preds results |
|
|
|
Returns: |
|
torch.float: deltapq loss |
|
""" |
|
def inner_deltapq_loss(bus, branch, edge_index, device): |
|
|
|
nb = bus.shape[0] |
|
nl = edge_index.shape[1] |
|
|
|
|
|
BR_R, BR_X, BR_B, TAP, SHIFT = 0, 1, 2, 3, 4 |
|
|
|
PD, QD, GS, BS, PG, QG, VM, VA = 0, 1, 2, 3, 4, 5, 6, 7 |
|
|
|
Ys = 1.0 / (branch[:, BR_R] + 1j * branch[:, BR_X]) |
|
Bc = branch[:, BR_B] |
|
tap = torch.ones(nl).to(device) |
|
i = torch.nonzero(branch[:, TAP]) |
|
tap[i] = branch[i, TAP] |
|
tap = tap * torch.exp(1j * branch[:, SHIFT]) |
|
|
|
Ytt = Ys + 1j * Bc / 2 |
|
Yff = Ytt / (tap * torch.conj(tap)) |
|
Yft = - Ys / torch.conj(tap) |
|
Ytf = - Ys / tap |
|
|
|
Ysh = bus[:, GS] + 1j * bus[:, BS] |
|
|
|
|
|
f = edge_index[0] |
|
t = edge_index[1] |
|
Cf = torch.sparse_coo_tensor( |
|
torch.vstack([torch.arange(nl).to(device), f]), |
|
torch.ones(nl).to(device), |
|
(nl, nb) |
|
).to(torch.complex64) |
|
Ct = torch.sparse_coo_tensor( |
|
torch.vstack([torch.arange(nl).to(device), t]), |
|
torch.ones(nl).to(device), |
|
(nl, nb) |
|
).to(torch.complex64) |
|
|
|
i_nl = torch.cat([torch.arange(nl), torch.arange(nl)], dim=0).to(device) |
|
i_ft = torch.cat([f, t], dim=0) |
|
|
|
Yf = torch.sparse_coo_tensor( |
|
torch.vstack([i_nl, i_ft]), |
|
torch.cat([Yff, Yft], dim=0), |
|
(nl, nb), |
|
dtype=torch.complex64 |
|
) |
|
|
|
Yt = torch.sparse_coo_tensor( |
|
torch.vstack([i_nl, i_ft]), |
|
torch.cat([Ytf, Ytt], dim=0), |
|
(nl, nb), |
|
dtype=torch.complex64 |
|
) |
|
|
|
Ysh_square = torch.sparse_coo_tensor( |
|
torch.vstack([torch.arange(nb), torch.arange(nb)]).to(device), |
|
Ysh, |
|
(nb, nb), |
|
dtype=torch.complex64 |
|
) |
|
|
|
Ybus = torch.matmul(Cf.T.to(torch.complex64), Yf) +\ |
|
torch.matmul(Ct.T.to(torch.complex64), Yt) + Ysh_square |
|
|
|
v = bus[:, VM] * torch.exp(1j * bus[:, VA]) |
|
|
|
i = torch.matmul(Ybus, v) |
|
i = torch.conj(i) |
|
s = v * i |
|
pd = bus[:, PD] + 1j * bus[:, QD] |
|
pg = bus[:, PG] + 1j * bus[:, QG] |
|
s = s + pd - pg |
|
|
|
delta_p = torch.real(s) |
|
delta_q = torch.imag(s) |
|
return delta_p, delta_q |
|
|
|
|
|
if need_clone: |
|
graph_data = graph_data.clone() |
|
device = graph_data['PQ'].x.device |
|
|
|
|
|
graph_data['PQ'].x = torch.cat([ |
|
graph_data['PQ'].supply, |
|
graph_data['PQ'].x[:, :2]], |
|
dim=1) |
|
|
|
graph_data['PV'].x = torch.cat([ |
|
graph_data['PV'].supply, |
|
graph_data['PV'].x[:, :2]], |
|
dim=1) |
|
|
|
graph_data['Slack'].x = torch.cat([ |
|
graph_data['Slack'].supply, |
|
graph_data['Slack'].x[:, :2]], |
|
dim=1) |
|
|
|
|
|
homo_graph_data = graph_data.to_homogeneous() |
|
|
|
index_diff = homo_graph_data.edge_index[1, :] - homo_graph_data.edge_index[0, :] |
|
|
|
edge_attr_1 = homo_graph_data.edge_attr[index_diff > 0, :] |
|
edge_index_1 = homo_graph_data.edge_index[:, index_diff > 0] |
|
delta_p_1, delta_q_1 = inner_deltapq_loss(homo_graph_data.x, edge_attr_1, edge_index_1, device) |
|
|
|
|
|
edge_index_2 = homo_graph_data.edge_index[:, index_diff < 0] |
|
edge_attr_2 = homo_graph_data.edge_attr[index_diff < 0, :] |
|
delta_p_2, delta_q_2 = inner_deltapq_loss(homo_graph_data.x, edge_attr_2, edge_index_2, device) |
|
|
|
delta_p, delta_q = (delta_p_1 + delta_p_2) / 2.0, (delta_q_1 + delta_q_2) / 2.0 |
|
|
|
if filt_type: |
|
PQ_mask = homo_graph_data['node_type'] == 0 |
|
PV_mask = homo_graph_data['node_type'] == 1 |
|
delta_p = delta_p[PQ_mask | PV_mask] |
|
delta_q = delta_q[PQ_mask] |
|
|
|
if aggr == "abs": |
|
loss = delta_p.abs().mean() + delta_q.abs().mean() |
|
elif aggr == "square": |
|
loss = (delta_p**2).mean() + (delta_q**2).mean() |
|
else: |
|
raise TypeError(f"no such aggr: {aggr}") |
|
return loss |
|
|
|
|
|
def create_Ybus(batch: HeteroData): |
|
homo_batch = batch.to_homogeneous().detach() |
|
bus = homo_batch.x |
|
index_diff = homo_batch.edge_index[1, :] - homo_batch.edge_index[0, :] |
|
|
|
edge_attr = homo_batch.edge_attr[index_diff > 0, :] |
|
edge_index_ori = homo_batch.edge_index[:, index_diff > 0] |
|
device = batch['PQ'].x.device |
|
with torch.no_grad(): |
|
edge_mask = torch.isnan(edge_attr[:,0]) |
|
edge_attr = edge_attr[~edge_mask] |
|
edge_index = torch.vstack([edge_index_ori[0][~edge_mask],edge_index_ori[1][~edge_mask]]) |
|
|
|
nb = bus.shape[0] |
|
nl = edge_index.shape[1] |
|
Vm, Va, P_net, Q_net, Gs, Bs = 0, 1, 2, 3, 4, 5 |
|
BR_R, BR_X, BR_B, TAP, SHIFT = 0, 1, 2, 3, 4 |
|
|
|
Ys = 1.0 / (edge_attr[:, BR_R] + 1j * edge_attr[:, BR_X]) |
|
Bc = edge_attr[:, BR_B] |
|
tap = torch.ones(nl).to(device) |
|
i = torch.nonzero(edge_attr[:, TAP]) |
|
tap[i] = edge_attr[i, TAP] |
|
tap = tap * torch.exp(1j * edge_attr[:, SHIFT]) |
|
|
|
Ytt = Ys + 1j * Bc / 2 |
|
Yff = Ytt / (tap * torch.conj(tap)) |
|
Yft = - Ys / torch.conj(tap) |
|
Ytf = - Ys / tap |
|
|
|
Ysh = bus[:, Gs] + 1j * bus[:, Bs] |
|
|
|
|
|
f = edge_index[0] |
|
t = edge_index[1] |
|
Cf = torch.sparse_coo_tensor( |
|
torch.vstack([torch.arange(nl).to(device), f]), |
|
torch.ones(nl).to(device), |
|
(nl, nb) |
|
).to(torch.complex64) |
|
Ct = torch.sparse_coo_tensor( |
|
torch.vstack([torch.arange(nl).to(device), t]), |
|
torch.ones(nl).to(device), |
|
(nl, nb) |
|
).to(torch.complex64) |
|
|
|
i_nl = torch.cat([torch.arange(nl), torch.arange(nl)], dim=0).to(device) |
|
i_ft = torch.cat([f, t], dim=0) |
|
|
|
Yf = torch.sparse_coo_tensor( |
|
torch.vstack([i_nl, i_ft]), |
|
torch.cat([Yff, Yft], dim=0), |
|
(nl, nb), |
|
dtype=torch.complex64 |
|
) |
|
|
|
Yt = torch.sparse_coo_tensor( |
|
torch.vstack([i_nl, i_ft]), |
|
torch.cat([Ytf, Ytt], dim=0), |
|
(nl, nb), |
|
dtype=torch.complex64 |
|
) |
|
|
|
Ysh_square = torch.sparse_coo_tensor( |
|
torch.vstack([torch.arange(nb), torch.arange(nb)]).to(device), |
|
Ysh, |
|
(nb, nb), |
|
dtype=torch.complex64 |
|
) |
|
|
|
Ybus = torch.matmul(Cf.T.to(torch.complex64), Yf) +\ |
|
torch.matmul(Ct.T.to(torch.complex64), Yt) + Ysh_square |
|
return Ybus |
|
|
|
def deltapq_loss(batch, Ybus): |
|
Vm, Va, P_net, Q_net = 0, 1, 2, 3 |
|
bus = batch.to_homogeneous().x |
|
v = bus[:, Vm] * torch.exp(1j * bus[:, Va]) |
|
i = torch.conj(torch.matmul(Ybus, v)) |
|
s = v * i + bus[:, P_net] + 1j * bus[:, Q_net] |
|
|
|
delta_p = torch.real(s) |
|
delta_q = torch.imag(s) |
|
return delta_p, delta_q |
|
|
|
|
|
|
|
|
|
|
|
def compute_shortest_path_distances(adj_matrix): |
|
distances = floyd_warshall(csgraph=adj_matrix, directed=False) |
|
return distances |
|
|
|
|
|
def convert_x_to_tanhx(tensor_in): |
|
return torch.tanh(tensor_in) |
|
|
|
|
|
|
|
class EENHPool(nn.Module): |
|
def __init__(self, in_dim, edge_dim, hidden_dim=None): |
|
super(EENHPool, self).__init__() |
|
hidden_dim = hidden_dim or in_dim |
|
|
|
|
|
self.W_h = nn.Linear(edge_dim, hidden_dim) |
|
self.W_n = nn.Linear(in_dim * 2, hidden_dim) |
|
self.w_e = nn.Parameter(torch.Tensor(hidden_dim, 1)) |
|
nn.init.xavier_uniform_(self.w_e) |
|
|
|
|
|
self.feature_transform = nn.Linear(in_dim, in_dim) |
|
|
|
def forward(self, x_dict, edge_index_dict, edge_attr_dict): |
|
""" |
|
Compute hierarchical edge importance and lift local features |
|
|
|
Args: |
|
x_dict: Dictionary of node features for each node type |
|
edge_index_dict: Dictionary of edge indices for each edge type |
|
edge_attr_dict: Dictionary of edge attributes for each edge type |
|
|
|
Returns: |
|
local_features: Dictionary of lifted local features for each node type |
|
edge_scores: Dictionary of edge importance scores |
|
""" |
|
local_features = {} |
|
edge_scores = {} |
|
|
|
|
|
for edge_type, edge_index in edge_index_dict.items(): |
|
if edge_type not in edge_attr_dict or edge_index.size(1) == 0: |
|
|
|
edge_scores[edge_type] = torch.tensor([], device=edge_index.device) |
|
continue |
|
|
|
src_type, _, dst_type = edge_type |
|
|
|
|
|
x_src = x_dict[src_type] |
|
x_dst = x_dict[dst_type] |
|
edge_attr = edge_attr_dict[edge_type] |
|
|
|
|
|
src_idx, dst_idx = edge_index |
|
node_features = torch.cat([x_src[src_idx], x_dst[dst_idx]], dim=1) |
|
|
|
|
|
edge_h = self.W_h(edge_attr) |
|
node_h = self.W_n(node_features) |
|
combined_h = F.relu(edge_h + node_h) |
|
scores = torch.matmul(combined_h, self.w_e).squeeze(-1) |
|
alpha = F.softmax(scores, dim=0) |
|
|
|
edge_scores[edge_type] = alpha |
|
|
|
|
|
for edge_type, edge_index in edge_index_dict.items(): |
|
if edge_type not in edge_attr_dict or edge_index.size(1) == 0: |
|
continue |
|
|
|
src_type, _, dst_type = edge_type |
|
src_idx, dst_idx = edge_index |
|
alpha = edge_scores[edge_type] |
|
|
|
|
|
for node_type in [src_type, dst_type]: |
|
if node_type not in local_features: |
|
local_features[node_type] = torch.zeros_like(x_dict[node_type]) |
|
|
|
|
|
if src_type == dst_type: |
|
|
|
local_features[src_type].index_add_( |
|
0, src_idx, |
|
-alpha.unsqueeze(1) * x_dict[dst_type][dst_idx] |
|
) |
|
else: |
|
|
|
local_features[src_type].index_add_( |
|
0, src_idx, |
|
-alpha.unsqueeze(1) * x_dict[dst_type][dst_idx] |
|
) |
|
|
|
local_features[dst_type].index_add_( |
|
0, dst_idx, |
|
-alpha.unsqueeze(1) * x_dict[src_type][src_idx] |
|
) |
|
|
|
|
|
for node_type in x_dict: |
|
if node_type in local_features: |
|
|
|
local_features[node_type] = x_dict[node_type] + local_features[node_type] |
|
|
|
local_features[node_type] = local_features[node_type] + self.feature_transform(local_features[node_type]) |
|
else: |
|
|
|
local_features[node_type] = x_dict[node_type] |
|
|
|
return local_features, edge_scores |
|
|
|
|
|
class CrossAttention(nn.Module): |
|
def __init__(self, in_dim1, in_dim2, k_dim, v_dim, num_heads): |
|
super(CrossAttention, self).__init__() |
|
self.num_heads = num_heads |
|
self.k_dim = k_dim |
|
self.v_dim = v_dim |
|
|
|
self.proj_q1 = nn.Linear(in_dim1, k_dim * num_heads, bias=False) |
|
self.proj_k2 = nn.Linear(in_dim2, k_dim * num_heads, bias=False) |
|
self.proj_v2 = nn.Linear(in_dim2, v_dim * num_heads, bias=False) |
|
self.proj_o = nn.Linear(v_dim * num_heads, in_dim1) |
|
|
|
def forward(self, x1, x2, mask=None): |
|
batch_size, seq_len1, in_dim1 = x1.size() |
|
seq_len2 = x2.size(1) |
|
|
|
q1 = self.proj_q1(x1).view(batch_size, seq_len1, self.num_heads, self.k_dim).permute(0, 2, 1, 3) |
|
k2 = self.proj_k2(x2).view(batch_size, seq_len2, self.num_heads, self.k_dim).permute(0, 2, 3, 1) |
|
v2 = self.proj_v2(x2).view(batch_size, seq_len2, self.num_heads, self.v_dim).permute(0, 2, 1, 3) |
|
|
|
attn = torch.matmul(q1, k2) / self.k_dim**0.5 |
|
|
|
|
|
if mask is not None: |
|
attn = attn.masked_fill(mask == 0, -1e9) |
|
|
|
attn = F.softmax(attn, dim=-1) |
|
output = torch.matmul(attn, v2).permute(0, 2, 1, 3) |
|
|
|
output= output.contiguous().view(batch_size, seq_len1, -1) |
|
|
|
output = self.proj_o(output) |
|
|
|
|
|
return output |
|
|
|
|
|
|
|
class GLUFFN(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, dropout_ratio=0.1): |
|
|
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features * 2) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(dropout_ratio) |
|
|
|
def forward(self, x): |
|
x, v = self.fc1(x).chunk(2, dim=-1) |
|
x = self.act(x) * v |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class GatedFusion(nn.Module): |
|
def __init__(self, in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer=nn.GELU, |
|
batch_size=100, |
|
dropout_ratio=0.1): |
|
super(GatedFusion, self).__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features * 2, hidden_features * 2) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(dropout_ratio) |
|
self.batch_size = batch_size |
|
|
|
def forward(self, pq_features, slack_features): |
|
|
|
BK, D = pq_features.size() |
|
B = self.batch_size |
|
K = BK // B |
|
pq_features = pq_features.view(B, K, D) |
|
slack_expanded = slack_features.unsqueeze(1).expand(-1, K, -1) |
|
combined = torch.cat([pq_features, slack_expanded], dim=-1) |
|
|
|
x = self.fc1(combined) |
|
x, v = x.chunk(2, dim=-1) |
|
x = self.act(x) * v |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
|
|
return x.contiguous().view(B*K, D) |
|
|
|
|
|
|
|
|
|
|
|
class GraphLayer(torch.nn.Module): |
|
def __init__(self, |
|
emb_dim, |
|
edge_dim, |
|
num_heads, |
|
batch_size, |
|
with_norm, |
|
act_layer=nn.ReLU, |
|
gcn_layer_per_block=2): |
|
super().__init__() |
|
|
|
self.graph_layers = nn.ModuleList() |
|
for _ in range(gcn_layer_per_block): |
|
self.graph_layers.append( |
|
HeteroConv({ |
|
('PQ', 'default', 'PQ'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim), |
|
('PQ', 'default', 'PV'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim), |
|
('PQ', 'default', 'Slack'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim), |
|
('PV', 'default', 'PQ'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim), |
|
('PV', 'default', 'PV'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim), |
|
('PV', 'default', 'Slack'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim), |
|
('Slack', 'default', 'PQ'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim), |
|
('Slack', 'default', 'PV'): ResGatedGraphConv((emb_dim,emb_dim), emb_dim, edge_dim=edge_dim), |
|
}, |
|
aggr='sum') |
|
) |
|
self.act_layer = act_layer() |
|
self.global_transform = nn.Linear(emb_dim, emb_dim) |
|
|
|
self.cross_attention = CrossAttention(in_dim1=emb_dim, |
|
in_dim2=emb_dim, |
|
k_dim=emb_dim//num_heads, |
|
v_dim=emb_dim//num_heads, |
|
num_heads=num_heads) |
|
|
|
self.norm = torch.nn.LayerNorm(emb_dim) if with_norm else nn.Identity() |
|
self.batch_size = batch_size |
|
|
|
|
|
def forward(self, batch: HeteroData): |
|
graph_x_dict = batch.x_dict |
|
|
|
|
|
pq_x = torch.stack(torch.chunk(graph_x_dict['PQ'], self.batch_size, dim=0), dim=0) |
|
pv_x = torch.stack(torch.chunk(graph_x_dict['PV'], self.batch_size, dim=0), dim=0) |
|
slack_x = torch.stack(torch.chunk(graph_x_dict['Slack'], self.batch_size, dim=0), dim=0) |
|
global_feature = torch.cat((pq_x,pv_x,slack_x), dim=1) |
|
global_feature = self.global_transform(global_feature) |
|
global_feature_mean = global_feature.mean(dim=1, keepdim=True) |
|
global_feature_max, _ = global_feature.max(dim=1, keepdim=True) |
|
|
|
|
|
for layer in self.graph_layers: |
|
graph_x_dict = layer(graph_x_dict, |
|
batch.edge_index_dict, |
|
batch.edge_attr_dict) |
|
|
|
graph_x_dict = {key: self.act_layer(x) for key, x in graph_x_dict.items()} |
|
|
|
global_node_feat = torch.cat([global_feature_mean, global_feature_max], dim=1) |
|
|
|
|
|
res = {} |
|
for key in ["PQ", "PV"]: |
|
|
|
BN, K = batch[key].x.size() |
|
B = self.batch_size |
|
N = BN // B |
|
|
|
graph_x_dict[key] = graph_x_dict[key] + self.cross_attention(graph_x_dict[key].view(B, N, K), global_node_feat).contiguous().view(B*N, K) |
|
|
|
res[key] = self.norm(graph_x_dict[key]) |
|
res["Slack"] = graph_x_dict["Slack"] |
|
|
|
return res |
|
|
|
|
|
|
|
class FFNLayer(torch.nn.Module): |
|
|
|
def __init__(self, |
|
embed_dim_in: int, |
|
embed_dim_hid: int, |
|
embed_dim_out: int, |
|
mlp_dropout: float, |
|
with_norm: bool, |
|
act_layer=nn.GELU): |
|
super().__init__() |
|
|
|
|
|
self.mlp = GLUFFN(in_features=embed_dim_in, |
|
hidden_features=embed_dim_hid, |
|
out_features=embed_dim_out, |
|
act_layer=act_layer, |
|
dropout_ratio=mlp_dropout) |
|
|
|
self.norm = torch.nn.LayerNorm(embed_dim_out) if with_norm else nn.Identity() |
|
|
|
def forward(self, x): |
|
x = x + self.mlp(x) |
|
return self.norm(x) |
|
|
|
|
|
class FFNFuseLayer(torch.nn.Module): |
|
|
|
def __init__(self, |
|
embed_dim_in: int, |
|
embed_dim_hid: int, |
|
embed_dim_out: int, |
|
mlp_dropout: float, |
|
with_norm: bool, |
|
batch_size: int, |
|
act_layer=nn.GELU): |
|
super().__init__() |
|
self.mlp = GatedFusion(in_features=embed_dim_in, |
|
hidden_features=embed_dim_hid, |
|
out_features=embed_dim_out, |
|
act_layer=act_layer, |
|
batch_size=batch_size, |
|
dropout_ratio=mlp_dropout) |
|
|
|
self.norm = torch.nn.LayerNorm(embed_dim_out) if with_norm else nn.Identity() |
|
|
|
def forward(self, x, x_aux): |
|
x = x + self.mlp(x, x_aux) |
|
return self.norm(x) |
|
|
|
|
|
|
|
class SRT_GT(nn.Module): |
|
def __init__(self, in_dim, hidden_dim, num_timesteps, dropout=0.1): |
|
super(SRT_GT, self).__init__() |
|
|
|
|
|
self.gamma = nn.Parameter(torch.Tensor(num_timesteps)) |
|
self.eta = nn.Parameter(torch.Tensor(num_timesteps)) |
|
|
|
nn.init.constant_(self.gamma, 0.15) |
|
nn.init.constant_(self.eta, 0.6) |
|
|
|
|
|
self.W_t = nn.ModuleList([ |
|
nn.Sequential( |
|
nn.Linear(in_dim, in_dim), |
|
nn.LayerNorm(in_dim) |
|
) for _ in range(num_timesteps) |
|
]) |
|
|
|
|
|
self.xi = nn.Parameter(torch.Tensor(1)) |
|
nn.init.constant_(self.xi, 0.2) |
|
|
|
|
|
self.output_proj = nn.Linear(in_dim, in_dim) |
|
|
|
self.dropout = nn.Dropout(dropout) |
|
self.act = nn.ReLU() |
|
|
|
|
|
self.temporal_edge_importances = [] |
|
|
|
def forward(self, x_dict, edge_index_dict, edge_attr_dict, local_features, timestep): |
|
""" |
|
Apply temporal graph transformer update with improved stability |
|
|
|
Args: |
|
x_dict: Dictionary of node features for each node type |
|
edge_index_dict: Dictionary of edge indices for each edge type |
|
edge_attr_dict: Dictionary of edge attributes for each edge type |
|
local_features: Dictionary of lifted local features from EENHPool |
|
timestep: Current timestep |
|
|
|
Returns: |
|
updated_x_dict: Updated node features |
|
""" |
|
updated_x_dict = {} |
|
edge_importances = {} |
|
|
|
|
|
messages_dict = {} |
|
for edge_type, edge_index in edge_index_dict.items(): |
|
if edge_index.size(1) == 0: |
|
|
|
continue |
|
|
|
src_type, _, dst_type = edge_type |
|
|
|
|
|
x_src = x_dict[src_type] |
|
|
|
|
|
src_idx, dst_idx = edge_index |
|
|
|
|
|
messages = self.W_t[timestep](x_src[src_idx]) |
|
|
|
|
|
gamma_t = torch.sigmoid(self.gamma[timestep]) |
|
|
|
|
|
if dst_type not in messages_dict: |
|
messages_dict[dst_type] = [] |
|
|
|
|
|
messages_dict[dst_type].append((dst_idx, gamma_t * messages)) |
|
|
|
|
|
edge_importances[edge_type] = gamma_t |
|
|
|
|
|
for node_type in x_dict: |
|
|
|
if node_type not in updated_x_dict: |
|
updated_x_dict[node_type] = x_dict[node_type].clone() |
|
|
|
|
|
if node_type in messages_dict: |
|
for dst_idx, messages in messages_dict[node_type]: |
|
updated_x_dict[node_type].index_add_(0, dst_idx, messages) |
|
|
|
|
|
eta_t = torch.sigmoid(self.eta[timestep]) |
|
|
|
|
|
updated_x_dict[node_type] = (1 - eta_t) * updated_x_dict[node_type] + eta_t * x_dict[node_type] |
|
|
|
|
|
if node_type in local_features: |
|
|
|
updated_x_dict[node_type] = updated_x_dict[node_type] + self.xi * local_features[node_type] |
|
|
|
|
|
updated_x_dict[node_type] = self.act(updated_x_dict[node_type]) |
|
updated_x_dict[node_type] = self.output_proj(updated_x_dict[node_type]) + updated_x_dict[node_type] |
|
updated_x_dict[node_type] = self.dropout(updated_x_dict[node_type]) |
|
|
|
|
|
self.temporal_edge_importances.append(edge_importances) |
|
|
|
return updated_x_dict |
|
|
|
def get_temporal_regularization_loss(self, lambda_reg=0.001): |
|
""" |
|
Compute temporal regularization loss to enforce smoothness |
|
|
|
Args: |
|
lambda_reg: Regularization weight (reduced for better balance) |
|
|
|
Returns: |
|
reg_loss: Temporal regularization loss |
|
""" |
|
if len(self.temporal_edge_importances) <= 1: |
|
return torch.tensor(0.0, device=self.gamma.device) |
|
|
|
reg_loss = torch.tensor(0.0, device=self.gamma.device) |
|
|
|
|
|
for t in range(len(self.temporal_edge_importances) - 1): |
|
for edge_type in self.temporal_edge_importances[t]: |
|
if edge_type in self.temporal_edge_importances[t+1]: |
|
diff = self.temporal_edge_importances[t+1][edge_type] - self.temporal_edge_importances[t][edge_type] |
|
reg_loss = reg_loss + torch.sum(diff ** 2) |
|
|
|
return lambda_reg * reg_loss |
|
|
|
def reset_temporal_importances(self): |
|
"""Reset stored temporal edge importances""" |
|
self.temporal_edge_importances = [] |
|
|
|
|
|
|
|
|
|
class HybridBlock(nn.Module): |
|
def __init__(self, |
|
emb_dim_in, |
|
emb_dim_out, |
|
with_norm, |
|
edge_dim, |
|
batch_size, |
|
dropout_ratio=0.1, |
|
layers_in_gcn=2, |
|
heads_ca=4, |
|
num_timesteps=3): |
|
super(HybridBlock, self).__init__() |
|
self.emb_dim_in = emb_dim_in |
|
self.with_norm = with_norm |
|
self.num_timesteps = num_timesteps |
|
|
|
|
|
self.eenhpool = EENHPool(in_dim=emb_dim_in, edge_dim=edge_dim) |
|
|
|
|
|
self.srt_gt = SRT_GT( |
|
in_dim=emb_dim_in, |
|
hidden_dim=emb_dim_in, |
|
num_timesteps=num_timesteps, |
|
dropout=dropout_ratio |
|
) |
|
|
|
|
|
self.branch_graph = GraphLayer(emb_dim=emb_dim_in, |
|
edge_dim=edge_dim, |
|
num_heads=heads_ca, |
|
batch_size=batch_size, |
|
with_norm=with_norm, |
|
gcn_layer_per_block=layers_in_gcn) |
|
|
|
|
|
self.ffn = nn.ModuleDict() |
|
self.ffn['PQ'] = FFNFuseLayer(embed_dim_in=emb_dim_in, embed_dim_hid=emb_dim_out, |
|
embed_dim_out=emb_dim_out, |
|
batch_size=batch_size, |
|
mlp_dropout=dropout_ratio, |
|
with_norm=with_norm) |
|
self.ffn['PV'] = FFNFuseLayer(embed_dim_in=emb_dim_in, embed_dim_hid=emb_dim_out, |
|
embed_dim_out=emb_dim_out, |
|
batch_size=batch_size, |
|
mlp_dropout=dropout_ratio, |
|
with_norm=with_norm) |
|
self.ffn['Slack'] = FFNLayer(embed_dim_in=emb_dim_in, embed_dim_hid=emb_dim_out, |
|
embed_dim_out=emb_dim_out, |
|
mlp_dropout=dropout_ratio, |
|
with_norm=with_norm) |
|
|
|
def forward(self, batch: HeteroData): |
|
|
|
original_features = {k: v.clone() for k, v in batch.x_dict.items()} |
|
|
|
|
|
res_graph = self.branch_graph(batch) |
|
|
|
|
|
for key in res_graph: |
|
batch[key].x = res_graph[key] |
|
|
|
|
|
local_features, edge_scores = self.eenhpool( |
|
batch.x_dict, |
|
batch.edge_index_dict, |
|
batch.edge_attr_dict |
|
) |
|
|
|
|
|
self.srt_gt.reset_temporal_importances() |
|
|
|
|
|
x_dict = batch.x_dict.copy() |
|
for t in range(self.num_timesteps): |
|
x_dict = self.srt_gt( |
|
x_dict, |
|
batch.edge_index_dict, |
|
batch.edge_attr_dict, |
|
local_features, |
|
t |
|
) |
|
|
|
|
|
for node_type, x in x_dict.items(): |
|
|
|
alpha = 0.7 |
|
batch[node_type].x = alpha * x + (1 - alpha) * original_features[node_type] |
|
|
|
|
|
|
|
setattr(batch, 'edge_scores', edge_scores) |
|
|
|
|
|
feat_slack = batch["Slack"].x |
|
|
|
for key in batch.x_dict: |
|
x = batch[key].x |
|
if "slack" in key.lower(): |
|
batch[key].x = self.ffn[key](x) |
|
else: |
|
batch[key].x = self.ffn[key](x, feat_slack) |
|
|
|
|
|
|
|
setattr(batch, 'temporal_reg_loss', self.srt_gt.get_temporal_regularization_loss()) |
|
|
|
return batch |
|
|
|
|
|
|
|
|
|
class PFNet(nn.Module): |
|
def __init__(self, |
|
hidden_channels, |
|
num_block, |
|
with_norm, |
|
batch_size, |
|
dropout_ratio, |
|
heads_ca, |
|
layers_per_graph=2, |
|
flag_use_edge_feat=False, |
|
num_timesteps=2, |
|
lambda_reg=0.001): |
|
super(PFNet, self).__init__() |
|
|
|
|
|
if isinstance(hidden_channels, list): |
|
hidden_block_layers = hidden_channels |
|
num_block = len(hidden_block_layers) - 1 |
|
elif isinstance(hidden_channels, int): |
|
hidden_block_layers = [hidden_channels] * (num_block+1) |
|
else: |
|
raise TypeError("Unsupported type: {}".format(type(hidden_channels))) |
|
self.hidden_block_layers = hidden_block_layers |
|
self.flag_use_edge_feat = flag_use_edge_feat |
|
self.lambda_reg = lambda_reg |
|
|
|
|
|
if self.flag_use_edge_feat: |
|
self.edge_encoder = Linear(5, hidden_channels) |
|
edge_dim = hidden_channels |
|
else: |
|
self.edge_encoder = None |
|
edge_dim = 5 |
|
|
|
|
|
self.encoders = nn.ModuleDict() |
|
self.encoders['PQ'] = Linear(6, hidden_block_layers[0]) |
|
self.encoders['PV'] = Linear(6, hidden_block_layers[0]) |
|
self.encoders['Slack'] = Linear(6, hidden_block_layers[0]) |
|
|
|
|
|
self.blocks = nn.ModuleList() |
|
for channel_in, channel_out in zip(hidden_block_layers[:-1], hidden_block_layers[1:]): |
|
self.blocks.append( |
|
HybridBlock(emb_dim_in=channel_in, |
|
emb_dim_out=channel_out, |
|
with_norm=with_norm, |
|
edge_dim=edge_dim, |
|
batch_size=batch_size, |
|
dropout_ratio=dropout_ratio, |
|
layers_in_gcn=layers_per_graph, |
|
heads_ca=heads_ca, |
|
num_timesteps=num_timesteps) |
|
) |
|
self.num_blocks = len(self.blocks) |
|
|
|
|
|
final_dim = sum(hidden_block_layers) - hidden_block_layers[0] |
|
self.predictor = nn.ModuleDict() |
|
self.predictor['PQ'] = Linear(final_dim, 6) |
|
self.predictor['PV'] = Linear(final_dim, 6) |
|
|
|
|
|
def forward(self, batch): |
|
|
|
if self.flag_use_edge_feat: |
|
for key in batch.edge_attr_dict: |
|
cur_edge_attr = batch.edge_attr_dict[key] |
|
r, x = cur_edge_attr[:, 0], cur_edge_attr[:, 1] |
|
cur_edge_attr[:, 0], cur_edge_attr[:, 1] = \ |
|
1.0 / torch.sqrt(r ** 2 + x ** 2), torch.arctan(r / x) |
|
|
|
batch[key].edge_attr = self.edge_encoder(cur_edge_attr) |
|
|
|
|
|
for key, x in batch.x_dict.items(): |
|
|
|
batch[key].x = self.encoders[key](x) |
|
|
|
|
|
multi_level_pq = [] |
|
multi_level_pv = [] |
|
for index, block in enumerate(self.blocks): |
|
batch = block(batch) |
|
multi_level_pq.append(batch["PQ"].x) |
|
multi_level_pv.append(batch["PV"].x) |
|
|
|
output = { |
|
'PQ': self.predictor['PQ'](torch.cat(multi_level_pq, dim=1)), |
|
'PV': self.predictor['PV'](torch.cat(multi_level_pv, dim=1)) |
|
} |
|
return output |
|
|
|
|
|
|
|
|
|
class IterGCN(nn.Module): |
|
def __init__(self, |
|
hidden_channels, |
|
num_block, |
|
with_norm, |
|
num_loops_train, |
|
scaling_factor_vm, |
|
scaling_factor_va, |
|
loss_type, |
|
batch_size, **kwargs): |
|
super(IterGCN, self).__init__() |
|
|
|
self.scaling_factor_vm = scaling_factor_vm |
|
self.scaling_factor_va = scaling_factor_va |
|
self.num_loops = num_loops_train |
|
|
|
|
|
self.net = PFNet(hidden_channels=hidden_channels, |
|
num_block=num_block, |
|
with_norm=with_norm, |
|
batch_size=batch_size, |
|
dropout_ratio=kwargs.get("dropout_ratio", 0.1), |
|
heads_ca=kwargs.get("heads_ca", 4), |
|
layers_per_graph=kwargs.get("layers_per_graph", 2), |
|
flag_use_edge_feat=kwargs.get("flag_use_edge_feat", False), |
|
num_timesteps=kwargs.get("num_timesteps", 2), |
|
lambda_reg=kwargs.get("lambda_reg", 0.001) |
|
) |
|
|
|
|
|
self.ema_warmup_epoch = kwargs.get("ema_warmup_epoch", 0) |
|
self.ema_decay_param = kwargs.get("ema_decay_param", 0.99) |
|
self.flag_use_ema = kwargs.get("flag_use_ema", False) |
|
if self.flag_use_ema: |
|
|
|
self.ema_model = PFNet(hidden_channels=hidden_channels, |
|
num_block=num_block, |
|
with_norm=with_norm, |
|
batch_size=batch_size, |
|
dropout_ratio=kwargs.get("dropout_ratio", 0.1), |
|
heads_ca=kwargs.get("heads_ca", 4), |
|
layers_per_graph=kwargs.get("layers_per_graph", 2), |
|
flag_use_edge_feat=kwargs.get("flag_use_edge_feat", False), |
|
num_timesteps=kwargs.get("num_timesteps", 2), |
|
lambda_reg=kwargs.get("lambda_reg", 0.001) |
|
) |
|
|
|
for p in self.ema_model.parameters(): |
|
p.requires_grad = False |
|
else: |
|
self.ema_model = None |
|
|
|
|
|
if loss_type == 'l1': |
|
self.critien = nn.L1Loss() |
|
elif loss_type == 'smooth_l1': |
|
self.critien = nn.SmoothL1Loss() |
|
elif loss_type == 'l2': |
|
self.critien = nn.MSELoss() |
|
elif loss_type == 'l3': |
|
self.critien = nn.HuberLoss() |
|
else: |
|
raise TypeError(f"no such loss type: {loss_type}") |
|
|
|
|
|
self.flag_weighted_loss = kwargs.get("flag_weighted_loss", False) |
|
self.loss_weight_equ = kwargs.get("loss_weight_equ", 1.0) |
|
self.loss_weight_vm = kwargs.get("loss_weight_vm", 1.0) |
|
self.loss_weight_va = kwargs.get("loss_weight_va", 1.0) |
|
|
|
def update_ema_model(self, epoch, i_iter, len_loader): |
|
if not self.flag_use_ema: |
|
return |
|
|
|
|
|
with torch.no_grad(): |
|
if epoch > self.ema_warmup_epoch: |
|
ema_decay = min( |
|
1 |
|
- 1 |
|
/ ( |
|
i_iter |
|
- len_loader * self.ema_warmup_epoch |
|
+ 1 |
|
), |
|
self.ema_decay_param, |
|
) |
|
else: |
|
ema_decay = 0.0 |
|
|
|
|
|
for param_train, param_eval in zip(self.net.parameters(), self.ema_model.parameters()): |
|
|
|
if param_train.data.shape != param_eval.data.shape: |
|
print(f"Warning: Parameter shape mismatch - train: {param_train.data.shape}, ema: {param_eval.data.shape}") |
|
continue |
|
param_eval.data = param_eval.data * ema_decay + param_train.data * (1 - ema_decay) |
|
|
|
|
|
for buffer_train, buffer_eval in zip(self.net.buffers(), self.ema_model.buffers()): |
|
|
|
if buffer_train.data.shape != buffer_eval.data.shape: |
|
print(f"Warning: Buffer shape mismatch - train: {buffer_train.data.shape}, ema: {buffer_eval.data.shape}") |
|
continue |
|
buffer_eval.data = buffer_eval.data * ema_decay + buffer_train.data * (1 - ema_decay) |
|
|
|
|
|
def forward(self, batch, flag_return_losses=False, flag_use_ema_infer=False, num_loop_infer=0): |
|
|
|
num_PQ = batch['PQ'].x.shape[0] |
|
num_PV = batch['PV'].x.shape[0] |
|
num_Slack = batch['Slack'].x.shape[0] |
|
Vm, Va, P_net, Q_net, Gs, Bs = 0, 1, 2, 3, 4, 5 |
|
|
|
|
|
if num_loop_infer < 1: |
|
num_loops = self.num_loops |
|
else: |
|
num_loops = num_loop_infer |
|
|
|
|
|
if not self.flag_use_ema: |
|
flag_use_ema_infer = False |
|
|
|
|
|
loss = 0.0 |
|
res_dict = {"loss_equ": 0.0, "loss_pq_vm": 0.0, "loss_pq_va": 0.0, "loss_pv_va": 0.0, "loss_temporal_reg": 0.0} |
|
Ybus = create_Ybus(batch.detach()) |
|
delta_p, delta_q = deltapq_loss(batch, Ybus) |
|
|
|
|
|
current_output = None |
|
|
|
|
|
for i in range(num_loops): |
|
|
|
cur_batch = batch.clone() |
|
|
|
|
|
if self.flag_use_ema and i > 0 and not flag_use_ema_infer and current_output is not None: |
|
|
|
cur_batch_hist = cur_batch.clone().detach() |
|
|
|
self.ema_model.eval() |
|
with torch.no_grad(): |
|
output_ema = self.ema_model(cur_batch_hist) |
|
|
|
|
|
cur_batch['PV'].x[:, Va] = cur_batch['PV'].x[:, Va] - current_output['PV'][:, Va] * self.scaling_factor_va + output_ema['PV'][:, Va] * self.scaling_factor_va |
|
cur_batch['PQ'].x[:, Vm] = cur_batch['PQ'].x[:, Vm] - current_output['PQ'][:, Vm] * self.scaling_factor_vm + output_ema['PQ'][:, Vm] * self.scaling_factor_vm |
|
cur_batch['PQ'].x[:, Va] = cur_batch['PQ'].x[:, Va] - current_output['PQ'][:, Va] * self.scaling_factor_va + output_ema['PQ'][:, Va] * self.scaling_factor_va |
|
|
|
delta_p, delta_q = deltapq_loss(cur_batch, Ybus) |
|
self.ema_model.train() |
|
|
|
|
|
cur_batch['PQ'].x[:, P_net] = delta_p[:num_PQ] |
|
cur_batch['PQ'].x[:, Q_net] = delta_q[:num_PQ] |
|
cur_batch['PV'].x[:, P_net] = delta_p[num_PQ:num_PQ+num_PV] |
|
cur_batch = cur_batch.detach() |
|
cur_batch_hist = cur_batch.clone().detach() |
|
|
|
|
|
if flag_use_ema_infer: |
|
output = self.ema_model(cur_batch) |
|
else: |
|
output = self.net(cur_batch) |
|
|
|
|
|
if self.flag_use_ema and not flag_use_ema_infer: |
|
|
|
current_output = {k: v.clone().detach() for k, v in output.items() if isinstance(v, torch.Tensor)} |
|
|
|
|
|
batch['PV'].x[:, Va] += output['PV'][:, Va] * self.scaling_factor_va |
|
batch['PQ'].x[:, Vm] += output['PQ'][:, Vm] * self.scaling_factor_vm |
|
batch['PQ'].x[:, Va] += output['PQ'][:, Va] * self.scaling_factor_va |
|
|
|
|
|
delta_p, delta_q = deltapq_loss(batch, Ybus) |
|
|
|
equ_loss = self.critien(delta_p[:num_PQ+num_PV], |
|
torch.zeros_like(delta_p[:num_PQ+num_PV]))\ |
|
+ self.critien(delta_q[:num_PQ][batch['PQ'].q_mask], |
|
torch.zeros_like(delta_q[:num_PQ][batch['PQ'].q_mask])) |
|
|
|
pq_vm_loss = self.critien(batch['PQ'].x[:,Vm], batch['PQ'].y[:,Vm]) |
|
pv_va_loss = self.critien(batch['PV'].x[:,Va], batch['PV'].y[:,Va]) |
|
pq_va_loss = self.critien(batch['PQ'].x[:,Va], batch['PQ'].y[:,Va]) |
|
|
|
|
|
|
|
device = batch['PQ'].x.device if 'PQ' in batch else next(iter(batch.x_dict.values())).device |
|
temporal_reg_loss = torch.tensor(0.0, device=device) |
|
if hasattr(cur_batch, 'temporal_reg_loss'): |
|
temporal_reg_loss = cur_batch.temporal_reg_loss |
|
|
|
if flag_return_losses: |
|
res_dict['loss_equ'] += equ_loss.cpu().item() |
|
res_dict['loss_pq_vm'] += pq_vm_loss.cpu().item() |
|
res_dict['loss_pq_va'] += pq_va_loss.cpu().item() |
|
res_dict['loss_pv_va'] += pv_va_loss.cpu().item() |
|
res_dict['loss_temporal_reg'] += temporal_reg_loss.cpu().item() |
|
|
|
if self.flag_weighted_loss: |
|
loss = loss + equ_loss * self.loss_weight_equ + pq_vm_loss * self.loss_weight_vm + (pv_va_loss + pq_va_loss) * self.loss_weight_va + temporal_reg_loss |
|
else: |
|
loss = loss + equ_loss + pq_vm_loss + pv_va_loss + pq_va_loss + temporal_reg_loss |
|
|
|
|
|
batch['PQ'].x[~batch['PQ'].q_mask, Q_net] = -delta_q[:num_PQ][~batch['PQ'].q_mask] |
|
batch['PV'].x[:, Q_net] = -delta_q[num_PQ:num_PQ+num_PV] |
|
batch['Slack'].x[:, P_net] = -delta_p[num_PQ+num_PV:num_PQ+num_PV+num_Slack] |
|
batch['Slack'].x[:, Q_net] = -delta_q[num_PQ+num_PV:num_PQ+num_PV+num_Slack] |
|
|
|
if flag_return_losses: |
|
return batch, loss, res_dict |
|
return batch, loss |
|
|
|
|
|
|
|
class SubclassOven(Oven): |
|
def __init__(self, cfg, log_dir): |
|
super(SubclassOven,self).__init__(cfg) |
|
self.cfg = cfg |
|
self.ngpus = cfg.get('ngpus', 1) |
|
if self.ngpus == 0: |
|
self.device = 'cpu' |
|
else: |
|
self.device = 'cuda' |
|
if (not self.cfg['distributed']) or (self.cfg['distributed'] and dist.get_rank() == 0): |
|
self.reporter = Reporter(cfg, log_dir) |
|
self.matrix = self._init_matrix() |
|
self.train_loader, self.valid_loader = self._init_data() |
|
self.criterion = self._init_criterion() |
|
self.model = self._init_model() |
|
self.optim, self.scheduler = self._init_optim() |
|
checkpt_path = self.cfg['model'].get("resume_ckpt_path", "") |
|
|
|
self.resume_training = True if os.path.exists(checkpt_path) else False |
|
self.checkpt_path = checkpt_path |
|
|
|
self.flag_use_ema_model = self.cfg['model'].get("flag_use_ema", False) |
|
|
|
def _init_matrix(self): |
|
if self.cfg['model']['matrix'] == 'vm_va': |
|
return vm_va_matrix |
|
else: |
|
raise TypeError(f"No such of matrix {self.cfg['model']['matrix']}") |
|
|
|
def _init_model(self): |
|
model = IterGCN(**self.cfg['model']) |
|
model = model.to(self.device) |
|
return model |
|
|
|
def _init_criterion(self): |
|
if self.cfg['loss']['type'] == "deltapq_loss": |
|
return deltapq_loss |
|
elif self.cfg['loss']['type'] == "bi_deltapq_loss": |
|
return bi_deltapq_loss |
|
else: |
|
raise TypeError(f"No such of loss {self.cfg['loss']['type']}") |
|
|
|
def exec_epoch(self, epoch, flag, flag_infer_ema=False): |
|
flag_return_losses = self.cfg.get("flag_return_losses", False) |
|
if flag == 'train': |
|
if (not self.cfg['distributed']) or (self.cfg['distributed'] and dist.get_rank() == 0): |
|
logger.info(f'-------------------- Epoch: {epoch+1} --------------------') |
|
self.model.train() |
|
if self.cfg['distributed']: |
|
self.train_loader.sampler.set_epoch(epoch) |
|
|
|
|
|
train_loss = AVGMeter() |
|
train_matrix = dict() |
|
total_batch = len(self.train_loader) |
|
print_period = self.cfg['train'].get('logs_freq', 8) |
|
print_freq = total_batch // print_period |
|
print_freq_lst = [i * print_freq for i in range(1, print_period)] + [total_batch - 1] |
|
|
|
|
|
for batch_id, batch in enumerate(self.train_loader): |
|
|
|
batch.to(self.device, non_blocking=True) |
|
|
|
|
|
self.optim.zero_grad() |
|
if flag_return_losses: |
|
pred, loss, record_losses = self.model(batch, flag_return_losses=True) |
|
else: |
|
pred, loss = self.model(batch) |
|
|
|
|
|
cur_matrix = self.matrix(pred) |
|
if (not self.cfg['distributed']) or (self.cfg['distributed'] and dist.get_rank() == 0): |
|
|
|
|
|
pass |
|
if batch_id == 0: |
|
for key in cur_matrix: |
|
train_matrix[key] = AVGMeter() |
|
|
|
for key in cur_matrix: |
|
train_matrix[key].update(cur_matrix[key]) |
|
|
|
|
|
loss.backward() |
|
clip_grad_norm_(self.model.parameters(), 1.0) |
|
self.optim.step() |
|
train_loss.update(loss.item()) |
|
|
|
|
|
if self.flag_use_ema_model: |
|
if self.cfg['distributed']: |
|
self.model.module.update_ema_model(epoch, batch_id + epoch * total_batch, total_batch) |
|
else: |
|
self.model.update_ema_model(epoch, batch_id + epoch * total_batch, total_batch) |
|
|
|
|
|
if (batch_id in print_freq_lst) or ((batch_id + 1) == total_batch): |
|
if self.cfg['distributed']: |
|
if dist.get_rank() == 0: |
|
if flag_return_losses: |
|
ret_loss_str = " ".join(["{}:{:.5f}".format(x, y) for x,y in record_losses.items()]) |
|
logger.info(f"Epoch[{str(epoch+1).zfill(3)}/{self.cfg['train']['epochs']}], iter[{str(batch_id+1).zfill(3)}/{total_batch}], loss_total:{loss.item():.5f}, {ret_loss_str}") |
|
else: |
|
logger.info(f"Epoch[{str(epoch+1).zfill(3)}/{self.cfg['train']['epochs']}], iter[{str(batch_id+1).zfill(3)}/{total_batch}], loss_total:{loss.item():.5f}") |
|
else: |
|
if flag_return_losses: |
|
ret_loss_str = " ".join(["{}:{:.5f}".format(x, y) for x,y in record_losses.items()]) |
|
logger.info(f"Epoch[{str(epoch+1).zfill(3)}/{self.cfg['train']['epochs']}], iter[{str(batch_id+1).zfill(3)}/{total_batch}], loss_total:{loss.item():.5f}, {ret_loss_str}") |
|
else: |
|
logger.info(f"Epoch[{str(epoch+1).zfill(3)}/{self.cfg['train']['epochs']}], iter[{str(batch_id+1).zfill(3)}/{total_batch}], loss_total:{loss.item():.5f}") |
|
return train_loss, train_matrix |
|
elif flag == 'valid': |
|
n_loops_test = self.cfg['model'].get("num_loops_test", 1) |
|
self.model.eval() |
|
if self.cfg['distributed']: |
|
world_size = dist.get_world_size() |
|
self.valid_loader.sampler.set_epoch(epoch) |
|
|
|
valid_loss = AVGMeter() |
|
val_matrix = dict() |
|
|
|
with torch.no_grad(): |
|
for batch_id, batch in enumerate(self.valid_loader): |
|
batch.to(self.device) |
|
if self.flag_use_ema_model: |
|
pred, loss = self.model(batch, num_loop_infer=n_loops_test, flag_use_ema_infer=flag_infer_ema) |
|
else: |
|
pred, loss = self.model(batch, num_loop_infer=n_loops_test) |
|
cur_matrix = self.matrix(pred, mode='val') |
|
|
|
if self.cfg['distributed']: |
|
|
|
for key in cur_matrix: |
|
|
|
tmp_value = torch.tensor(cur_matrix[key]).cuda() |
|
dist.all_reduce(tmp_value) |
|
cur_matrix[key] = tmp_value.cpu().item() / world_size |
|
if batch_id == 0: |
|
for key in cur_matrix: |
|
val_matrix[key] = AVGMeter() |
|
for key in cur_matrix: |
|
val_matrix[key].update(cur_matrix[key]) |
|
|
|
if self.cfg['distributed']: |
|
tmp_loss = loss.clone().detach() |
|
dist.all_reduce(tmp_loss) |
|
valid_loss.update(tmp_loss.cpu().item() / world_size) |
|
else: |
|
valid_loss.update(loss.cpu().item()) |
|
|
|
return valid_loss, val_matrix |
|
else: |
|
raise ValueError(f'flag == {flag} not support, choice[train, valid]') |
|
|
|
|
|
def train(self): |
|
if self.ngpus > 1: |
|
dummy_batch_data = next(iter(self.train_loader)) |
|
dummy_batch_data.to(self.device, non_blocking=True) |
|
with torch.no_grad(): |
|
if self.flag_use_ema_model: |
|
_ = self.model(dummy_batch_data, num_loop_infer=1) |
|
_ = self.model(dummy_batch_data, num_loop_infer=1, flag_use_ema_infer=True) |
|
else: |
|
_ = self.model(dummy_batch_data, num_loop_infer=1) |
|
|
|
if (not self.cfg['distributed']) or (self.cfg['distributed'] and dist.get_rank() == 0): |
|
logger.info(f'==================== Total number of parameters: {count_parameters(self.model):.3f}M') |
|
|
|
local_rank = int(os.environ["LOCAL_RANK"]) |
|
self.model = torch.nn.parallel.DistributedDataParallel( |
|
self.model, |
|
device_ids=[local_rank], |
|
output_device=local_rank, |
|
find_unused_parameters=True, |
|
|
|
) |
|
else: |
|
dummy_batch_data = next(iter(self.train_loader)) |
|
dummy_batch_data.to(self.device, non_blocking=True) |
|
with torch.no_grad(): |
|
|
|
if self.flag_use_ema_model: |
|
_ = self.model(dummy_batch_data, num_loop_infer=1) |
|
_ = self.model(dummy_batch_data, num_loop_infer=1, flag_use_ema_infer=True) |
|
else: |
|
_ = self.model(dummy_batch_data, num_loop_infer=1) |
|
logger.info(f'==================== Total number of parameters: {count_parameters(self.model):.3f}M') |
|
|
|
|
|
if not self.resume_training: |
|
self.perform_best = np.Infinity |
|
self.perform_best_ep = -1 |
|
self.start_epoch = 0 |
|
self.perform_best_metrics = {} |
|
else: |
|
self.perform_best, self.perform_best_ep, self.start_epoch, self.perform_best_metrics = self._init_training_wt_checkpoint(self.checkpt_path) |
|
|
|
local_best = self.perform_best |
|
local_best_ep = self.perform_best_ep |
|
local_best_metrics = self.perform_best_metrics |
|
if self.flag_use_ema_model: |
|
local_best_ema = self.perform_best |
|
local_best_ep_ema = self.perform_best_ep |
|
local_best_metrics_ema =self.perform_best_metrics |
|
for epoch in range(self.start_epoch, self.cfg['train']['epochs']): |
|
with Timer(rest_epochs=self.cfg['train']['epochs'] - (epoch + 1)) as timer: |
|
train_loss, train_matrix = self.exec_epoch(epoch, flag='train') |
|
valid_loss, val_matrix = self.exec_epoch(epoch, flag='valid') |
|
if self.flag_use_ema_model: |
|
valid_loss_ema, valid_matrix_ema = self.exec_epoch(epoch, flag='valid', |
|
flag_infer_ema=True) |
|
if self.scheduler: |
|
if isinstance(self.scheduler, ReduceLROnPlateau): |
|
self.scheduler.step(valid_loss.agg()) |
|
else: |
|
self.scheduler.step() |
|
if self.flag_use_ema_model: |
|
local_best, local_best_ep, local_best_ema, local_best_ep_ema,local_best_metrics_ema = self.summary_epoch(epoch, |
|
train_loss, train_matrix, |
|
valid_loss, val_matrix, |
|
timer, local_best, local_best_ep, local_best_metrics, |
|
local_best_ema=local_best_ema, |
|
local_best_ep_ema=local_best_ep_ema, |
|
local_best_metrics_ema = local_best_metrics_ema, |
|
valid_loss_ema=valid_loss_ema, |
|
val_matrix_ema=valid_matrix_ema) |
|
else: |
|
local_best, local_best_ep, local_best_metrics = self.summary_epoch(epoch, |
|
train_loss, train_matrix, |
|
valid_loss, val_matrix, |
|
timer, |
|
local_best, local_best_ep,local_best_metrics) |
|
|
|
if (not self.cfg['distributed']) or (self.cfg['distributed'] and dist.get_rank() == 0): |
|
self.reporter.close() |
|
return local_best_ep_ema,local_best_metrics_ema |
|
|
|
if __name__ == "__main__": |
|
str2bool = lambda x: x.lower() == 'true' |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--out_dir", type=str, default="run_0") |
|
parser.add_argument('--config', type=str, default='./configs/default.yaml') |
|
parser.add_argument('--distributed', default=False, action='store_true') |
|
parser.add_argument('--local-rank', default=0, type=int, help='node rank for distributed training') |
|
parser.add_argument("--seed", type=int, default=2024) |
|
parser.add_argument("--ngpus", type=int, default=1) |
|
parser.add_argument("--num_timesteps", type=int, default=2, help="Number of timesteps for SRT-GT") |
|
parser.add_argument("--lambda_reg", type=float, default=0.0005, help="Regularization weight for temporal smoothness") |
|
args = parser.parse_args() |
|
try: |
|
with open(args.config, 'r') as file: |
|
cfg = yaml.safe_load(file) |
|
for key, value in vars(args).items(): |
|
if value is not None: |
|
cfg[key] = value |
|
cfg['log_path'] = os.path.join(cfg['log_path'], os.path.basename(args.config)[:-5]) |
|
metadata = (cfg['data']['meta']['node'], |
|
list(map(tuple, cfg['data']['meta']['edge']))) |
|
set_random_seed(cfg["seed"] if cfg["seed"] > 0 else 1, deterministic=False) |
|
if cfg['distributed']: |
|
rank, word_size = setup_distributed() |
|
if not os.path.exists(cfg["log_path"]) and rank == 0: |
|
os.makedirs(cfg["log_path"]) |
|
if rank == 0: |
|
|
|
curr_timestr = setup_default_logging_wt_dir(cfg["log_path"]) |
|
cfg["log_path"] = os.path.join(cfg["log_path"], curr_timestr) |
|
os.makedirs(cfg["log_path"], exist_ok=True) |
|
csv_path = os.path.join(cfg["log_path"], "out_stat.csv") |
|
|
|
from shutil import copyfile |
|
output_yaml = os.path.join(cfg["log_path"], "config.yaml") |
|
copyfile(cfg['config'], output_yaml) |
|
else: |
|
csv_path = None |
|
if rank == 0: |
|
logger.info("\n{}".format(pprint.pformat(cfg))) |
|
|
|
dist.barrier() |
|
else: |
|
if not os.path.exists(cfg["log_path"]): |
|
os.makedirs(cfg["log_path"]) |
|
|
|
curr_timestr = setup_default_logging_wt_dir(cfg["log_path"]) |
|
cfg["log_path"] = os.path.join(cfg["log_path"], curr_timestr) |
|
os.makedirs(cfg["log_path"], exist_ok=True) |
|
csv_path = os.path.join(cfg["log_path"], "info_{}_stat.csv".format(curr_timestr)) |
|
|
|
from shutil import copyfile |
|
output_yaml = os.path.join(cfg["log_path"], "config.yaml") |
|
copyfile(cfg['config'], output_yaml) |
|
|
|
logger.info("\n{}".format(pprint.pformat(cfg))) |
|
log_dir = os.path.join(args.out_dir, 'logs') |
|
pathlib.Path(log_dir).mkdir(parents=True, exist_ok=True) |
|
oven = SubclassOven(cfg, log_dir) |
|
local_best_ep_ema,local_best_metrics_ema = oven.train() |
|
local_best_metrics_ema.update({"epoch":local_best_ep_ema}) |
|
final_infos = { |
|
"IEEE39":{ |
|
"means": local_best_metrics_ema |
|
} |
|
} |
|
pathlib.Path(args.out_dir).mkdir(parents=True, exist_ok=True) |
|
with open(os.path.join(args.out_dir, "final_info.json"), "w") as f: |
|
json.dump(final_infos, f) |
|
except Exception as e: |
|
print("Original error in subprocess:", flush=True) |
|
traceback.print_exc(file=open(os.path.join(args.out_dir, "traceback.log"), "w")) |
|
raise |
|
|