|
import logging |
|
import os |
|
import pickle |
|
import random |
|
import shutil |
|
import subprocess |
|
import SharedArray |
|
|
|
import numpy as np |
|
import torch |
|
import torch.distributed as dist |
|
import torch.multiprocessing as mp |
|
|
|
|
|
def check_numpy_to_torch(x): |
|
if isinstance(x, np.ndarray): |
|
return torch.from_numpy(x).float(), True |
|
return x, False |
|
|
|
|
|
def limit_period(val, offset=0.5, period=np.pi): |
|
val, is_numpy = check_numpy_to_torch(val) |
|
ans = val - torch.floor(val / period + offset) * period |
|
return ans.numpy() if is_numpy else ans |
|
|
|
|
|
def drop_info_with_name(info, name): |
|
ret_info = {} |
|
keep_indices = [i for i, x in enumerate(info['name']) if x != name] |
|
for key in info.keys(): |
|
ret_info[key] = info[key][keep_indices] |
|
return ret_info |
|
|
|
|
|
def rotate_points_along_z(points, angle): |
|
""" |
|
Args: |
|
points: (B, N, 3 + C) |
|
angle: (B), angle along z-axis, angle increases x ==> y |
|
Returns: |
|
|
|
""" |
|
points, is_numpy = check_numpy_to_torch(points) |
|
angle, _ = check_numpy_to_torch(angle) |
|
|
|
cosa = torch.cos(angle) |
|
sina = torch.sin(angle) |
|
zeros = angle.new_zeros(points.shape[0]) |
|
ones = angle.new_ones(points.shape[0]) |
|
rot_matrix = torch.stack(( |
|
cosa, sina, zeros, |
|
-sina, cosa, zeros, |
|
zeros, zeros, ones |
|
), dim=1).view(-1, 3, 3).float() |
|
points_rot = torch.matmul(points[:, :, 0:3], rot_matrix) |
|
points_rot = torch.cat((points_rot, points[:, :, 3:]), dim=-1) |
|
return points_rot.numpy() if is_numpy else points_rot |
|
|
|
|
|
def angle2matrix(angle): |
|
""" |
|
Args: |
|
angle: angle along z-axis, angle increases x ==> y |
|
Returns: |
|
rot_matrix: (3x3 Tensor) rotation matrix |
|
""" |
|
|
|
cosa = torch.cos(angle) |
|
sina = torch.sin(angle) |
|
rot_matrix = torch.tensor([ |
|
[cosa, -sina, 0], |
|
[sina, cosa, 0], |
|
[ 0, 0, 1] |
|
]) |
|
return rot_matrix |
|
|
|
|
|
def mask_points_by_range(points, limit_range): |
|
mask = (points[:, 0] >= limit_range[0]) & (points[:, 0] <= limit_range[3]) \ |
|
& (points[:, 1] >= limit_range[1]) & (points[:, 1] <= limit_range[4]) |
|
return mask |
|
|
|
|
|
def get_voxel_centers(voxel_coords, downsample_times, voxel_size, point_cloud_range): |
|
""" |
|
Args: |
|
voxel_coords: (N, 3) |
|
downsample_times: |
|
voxel_size: |
|
point_cloud_range: |
|
|
|
Returns: |
|
|
|
""" |
|
assert voxel_coords.shape[1] == 3 |
|
voxel_centers = voxel_coords[:, [2, 1, 0]].float() |
|
voxel_size = torch.tensor(voxel_size, device=voxel_centers.device).float() * downsample_times |
|
pc_range = torch.tensor(point_cloud_range[0:3], device=voxel_centers.device).float() |
|
voxel_centers = (voxel_centers + 0.5) * voxel_size + pc_range |
|
return voxel_centers |
|
|
|
|
|
def create_logger(log_file=None, rank=0, log_level=logging.INFO): |
|
logger = logging.getLogger(__name__) |
|
logger.setLevel(log_level if rank == 0 else 'ERROR') |
|
formatter = logging.Formatter('%(asctime)s %(levelname)5s %(message)s') |
|
console = logging.StreamHandler() |
|
console.setLevel(log_level if rank == 0 else 'ERROR') |
|
console.setFormatter(formatter) |
|
logger.addHandler(console) |
|
if log_file is not None: |
|
file_handler = logging.FileHandler(filename=log_file) |
|
file_handler.setLevel(log_level if rank == 0 else 'ERROR') |
|
file_handler.setFormatter(formatter) |
|
logger.addHandler(file_handler) |
|
logger.propagate = False |
|
return logger |
|
|
|
|
|
def set_random_seed(seed): |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed(seed) |
|
torch.backends.cudnn.deterministic = True |
|
torch.backends.cudnn.benchmark = False |
|
|
|
|
|
def worker_init_fn(worker_id, seed=666): |
|
if seed is not None: |
|
random.seed(seed + worker_id) |
|
np.random.seed(seed + worker_id) |
|
torch.manual_seed(seed + worker_id) |
|
torch.cuda.manual_seed(seed + worker_id) |
|
torch.cuda.manual_seed_all(seed + worker_id) |
|
|
|
|
|
def get_pad_params(desired_size, cur_size): |
|
""" |
|
Get padding parameters for np.pad function |
|
Args: |
|
desired_size: int, Desired padded output size |
|
cur_size: int, Current size. Should always be less than or equal to cur_size |
|
Returns: |
|
pad_params: tuple(int), Number of values padded to the edges (before, after) |
|
""" |
|
assert desired_size >= cur_size |
|
|
|
|
|
diff = desired_size - cur_size |
|
pad_params = (0, diff) |
|
|
|
return pad_params |
|
|
|
|
|
def keep_arrays_by_name(gt_names, used_classes): |
|
inds = [i for i, x in enumerate(gt_names) if x in used_classes] |
|
inds = np.array(inds, dtype=np.int64) |
|
return inds |
|
|
|
|
|
def init_dist_slurm(tcp_port, local_rank, backend='nccl'): |
|
""" |
|
modified from https://github.com/open-mmlab/mmdetection |
|
Args: |
|
tcp_port: |
|
backend: |
|
|
|
Returns: |
|
|
|
""" |
|
proc_id = int(os.environ['SLURM_PROCID']) |
|
ntasks = int(os.environ['SLURM_NTASKS']) |
|
node_list = os.environ['SLURM_NODELIST'] |
|
num_gpus = torch.cuda.device_count() |
|
torch.cuda.set_device(proc_id % num_gpus) |
|
addr = subprocess.getoutput('scontrol show hostname {} | head -n1'.format(node_list)) |
|
os.environ['MASTER_PORT'] = str(tcp_port) |
|
os.environ['MASTER_ADDR'] = addr |
|
os.environ['WORLD_SIZE'] = str(ntasks) |
|
os.environ['RANK'] = str(proc_id) |
|
dist.init_process_group(backend=backend) |
|
|
|
total_gpus = dist.get_world_size() |
|
rank = dist.get_rank() |
|
return total_gpus, rank |
|
|
|
|
|
def init_dist_pytorch(tcp_port, local_rank, backend='nccl'): |
|
if mp.get_start_method(allow_none=True) is None: |
|
mp.set_start_method('spawn') |
|
|
|
|
|
num_gpus = torch.cuda.device_count() |
|
torch.cuda.set_device(local_rank % num_gpus) |
|
|
|
dist.init_process_group( |
|
backend=backend, |
|
|
|
|
|
|
|
) |
|
rank = dist.get_rank() |
|
return num_gpus, rank |
|
|
|
|
|
def get_dist_info(return_gpu_per_machine=False): |
|
if torch.__version__ < '1.0': |
|
initialized = dist._initialized |
|
else: |
|
if dist.is_available(): |
|
initialized = dist.is_initialized() |
|
else: |
|
initialized = False |
|
if initialized: |
|
rank = dist.get_rank() |
|
world_size = dist.get_world_size() |
|
else: |
|
rank = 0 |
|
world_size = 1 |
|
|
|
if return_gpu_per_machine: |
|
gpu_per_machine = torch.cuda.device_count() |
|
return rank, world_size, gpu_per_machine |
|
|
|
return rank, world_size |
|
|
|
|
|
def merge_results_dist(result_part, size, tmpdir): |
|
rank, world_size = get_dist_info() |
|
os.makedirs(tmpdir, exist_ok=True) |
|
|
|
dist.barrier() |
|
pickle.dump(result_part, open(os.path.join(tmpdir, 'result_part_{}.pkl'.format(rank)), 'wb')) |
|
dist.barrier() |
|
|
|
if rank != 0: |
|
return None |
|
|
|
part_list = [] |
|
for i in range(world_size): |
|
part_file = os.path.join(tmpdir, 'result_part_{}.pkl'.format(i)) |
|
part_list.append(pickle.load(open(part_file, 'rb'))) |
|
|
|
ordered_results = [] |
|
for res in zip(*part_list): |
|
ordered_results.extend(list(res)) |
|
ordered_results = ordered_results[:size] |
|
shutil.rmtree(tmpdir) |
|
return ordered_results |
|
|
|
|
|
def scatter_point_inds(indices, point_inds, shape): |
|
ret = -1 * torch.ones(*shape, dtype=point_inds.dtype, device=point_inds.device) |
|
ndim = indices.shape[-1] |
|
flattened_indices = indices.view(-1, ndim) |
|
slices = [flattened_indices[:, i] for i in range(ndim)] |
|
ret[slices] = point_inds |
|
return ret |
|
|
|
|
|
def generate_voxel2pinds(sparse_tensor): |
|
device = sparse_tensor.indices.device |
|
batch_size = sparse_tensor.batch_size |
|
spatial_shape = sparse_tensor.spatial_shape |
|
indices = sparse_tensor.indices.long() |
|
point_indices = torch.arange(indices.shape[0], device=device, dtype=torch.int32) |
|
output_shape = [batch_size] + list(spatial_shape) |
|
v2pinds_tensor = scatter_point_inds(indices, point_indices, output_shape) |
|
return v2pinds_tensor |
|
|
|
|
|
def sa_create(name, var): |
|
x = SharedArray.create(name, var.shape, dtype=var.dtype) |
|
x[...] = var[...] |
|
x.flags.writeable = False |
|
return x |
|
|
|
|
|
class AverageMeter(object): |
|
"""Computes and stores the average and current value""" |
|
def __init__(self): |
|
self.reset() |
|
|
|
def reset(self): |
|
self.val = 0 |
|
self.avg = 0 |
|
self.sum = 0 |
|
self.count = 0 |
|
|
|
def update(self, val, n=1): |
|
self.val = val |
|
self.sum += val * n |
|
self.count += n |
|
self.avg = self.sum / self.count |
|
|