yxc97's picture
Upload folder using huggingface_hub
62a2f1c verified
import logging
import os
import pickle
import random
import shutil
import subprocess
import SharedArray
import numpy as np
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
def check_numpy_to_torch(x):
if isinstance(x, np.ndarray):
return torch.from_numpy(x).float(), True
return x, False
def limit_period(val, offset=0.5, period=np.pi):
val, is_numpy = check_numpy_to_torch(val)
ans = val - torch.floor(val / period + offset) * period
return ans.numpy() if is_numpy else ans
def drop_info_with_name(info, name):
ret_info = {}
keep_indices = [i for i, x in enumerate(info['name']) if x != name]
for key in info.keys():
ret_info[key] = info[key][keep_indices]
return ret_info
def rotate_points_along_z(points, angle):
"""
Args:
points: (B, N, 3 + C)
angle: (B), angle along z-axis, angle increases x ==> y
Returns:
"""
points, is_numpy = check_numpy_to_torch(points)
angle, _ = check_numpy_to_torch(angle)
cosa = torch.cos(angle)
sina = torch.sin(angle)
zeros = angle.new_zeros(points.shape[0])
ones = angle.new_ones(points.shape[0])
rot_matrix = torch.stack((
cosa, sina, zeros,
-sina, cosa, zeros,
zeros, zeros, ones
), dim=1).view(-1, 3, 3).float()
points_rot = torch.matmul(points[:, :, 0:3], rot_matrix)
points_rot = torch.cat((points_rot, points[:, :, 3:]), dim=-1)
return points_rot.numpy() if is_numpy else points_rot
def angle2matrix(angle):
"""
Args:
angle: angle along z-axis, angle increases x ==> y
Returns:
rot_matrix: (3x3 Tensor) rotation matrix
"""
cosa = torch.cos(angle)
sina = torch.sin(angle)
rot_matrix = torch.tensor([
[cosa, -sina, 0],
[sina, cosa, 0],
[ 0, 0, 1]
])
return rot_matrix
def mask_points_by_range(points, limit_range):
mask = (points[:, 0] >= limit_range[0]) & (points[:, 0] <= limit_range[3]) \
& (points[:, 1] >= limit_range[1]) & (points[:, 1] <= limit_range[4])
return mask
def get_voxel_centers(voxel_coords, downsample_times, voxel_size, point_cloud_range):
"""
Args:
voxel_coords: (N, 3)
downsample_times:
voxel_size:
point_cloud_range:
Returns:
"""
assert voxel_coords.shape[1] == 3
voxel_centers = voxel_coords[:, [2, 1, 0]].float() # (xyz)
voxel_size = torch.tensor(voxel_size, device=voxel_centers.device).float() * downsample_times
pc_range = torch.tensor(point_cloud_range[0:3], device=voxel_centers.device).float()
voxel_centers = (voxel_centers + 0.5) * voxel_size + pc_range
return voxel_centers
def create_logger(log_file=None, rank=0, log_level=logging.INFO):
logger = logging.getLogger(__name__)
logger.setLevel(log_level if rank == 0 else 'ERROR')
formatter = logging.Formatter('%(asctime)s %(levelname)5s %(message)s')
console = logging.StreamHandler()
console.setLevel(log_level if rank == 0 else 'ERROR')
console.setFormatter(formatter)
logger.addHandler(console)
if log_file is not None:
file_handler = logging.FileHandler(filename=log_file)
file_handler.setLevel(log_level if rank == 0 else 'ERROR')
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.propagate = False
return logger
def set_random_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def worker_init_fn(worker_id, seed=666):
if seed is not None:
random.seed(seed + worker_id)
np.random.seed(seed + worker_id)
torch.manual_seed(seed + worker_id)
torch.cuda.manual_seed(seed + worker_id)
torch.cuda.manual_seed_all(seed + worker_id)
def get_pad_params(desired_size, cur_size):
"""
Get padding parameters for np.pad function
Args:
desired_size: int, Desired padded output size
cur_size: int, Current size. Should always be less than or equal to cur_size
Returns:
pad_params: tuple(int), Number of values padded to the edges (before, after)
"""
assert desired_size >= cur_size
# Calculate amount to pad
diff = desired_size - cur_size
pad_params = (0, diff)
return pad_params
def keep_arrays_by_name(gt_names, used_classes):
inds = [i for i, x in enumerate(gt_names) if x in used_classes]
inds = np.array(inds, dtype=np.int64)
return inds
def init_dist_slurm(tcp_port, local_rank, backend='nccl'):
"""
modified from https://github.com/open-mmlab/mmdetection
Args:
tcp_port:
backend:
Returns:
"""
proc_id = int(os.environ['SLURM_PROCID'])
ntasks = int(os.environ['SLURM_NTASKS'])
node_list = os.environ['SLURM_NODELIST']
num_gpus = torch.cuda.device_count()
torch.cuda.set_device(proc_id % num_gpus)
addr = subprocess.getoutput('scontrol show hostname {} | head -n1'.format(node_list))
os.environ['MASTER_PORT'] = str(tcp_port)
os.environ['MASTER_ADDR'] = addr
os.environ['WORLD_SIZE'] = str(ntasks)
os.environ['RANK'] = str(proc_id)
dist.init_process_group(backend=backend)
total_gpus = dist.get_world_size()
rank = dist.get_rank()
return total_gpus, rank
def init_dist_pytorch(tcp_port, local_rank, backend='nccl'):
if mp.get_start_method(allow_none=True) is None:
mp.set_start_method('spawn')
# os.environ['MASTER_PORT'] = str(tcp_port)
# os.environ['MASTER_ADDR'] = 'localhost'
num_gpus = torch.cuda.device_count()
torch.cuda.set_device(local_rank % num_gpus)
dist.init_process_group(
backend=backend,
# init_method='tcp://127.0.0.1:%d' % tcp_port,
# rank=local_rank,
# world_size=num_gpus
)
rank = dist.get_rank()
return num_gpus, rank
def get_dist_info(return_gpu_per_machine=False):
if torch.__version__ < '1.0':
initialized = dist._initialized
else:
if dist.is_available():
initialized = dist.is_initialized()
else:
initialized = False
if initialized:
rank = dist.get_rank()
world_size = dist.get_world_size()
else:
rank = 0
world_size = 1
if return_gpu_per_machine:
gpu_per_machine = torch.cuda.device_count()
return rank, world_size, gpu_per_machine
return rank, world_size
def merge_results_dist(result_part, size, tmpdir):
rank, world_size = get_dist_info()
os.makedirs(tmpdir, exist_ok=True)
dist.barrier()
pickle.dump(result_part, open(os.path.join(tmpdir, 'result_part_{}.pkl'.format(rank)), 'wb'))
dist.barrier()
if rank != 0:
return None
part_list = []
for i in range(world_size):
part_file = os.path.join(tmpdir, 'result_part_{}.pkl'.format(i))
part_list.append(pickle.load(open(part_file, 'rb')))
ordered_results = []
for res in zip(*part_list):
ordered_results.extend(list(res))
ordered_results = ordered_results[:size]
shutil.rmtree(tmpdir)
return ordered_results
def scatter_point_inds(indices, point_inds, shape):
ret = -1 * torch.ones(*shape, dtype=point_inds.dtype, device=point_inds.device)
ndim = indices.shape[-1]
flattened_indices = indices.view(-1, ndim)
slices = [flattened_indices[:, i] for i in range(ndim)]
ret[slices] = point_inds
return ret
def generate_voxel2pinds(sparse_tensor):
device = sparse_tensor.indices.device
batch_size = sparse_tensor.batch_size
spatial_shape = sparse_tensor.spatial_shape
indices = sparse_tensor.indices.long()
point_indices = torch.arange(indices.shape[0], device=device, dtype=torch.int32)
output_shape = [batch_size] + list(spatial_shape)
v2pinds_tensor = scatter_point_inds(indices, point_indices, output_shape)
return v2pinds_tensor
def sa_create(name, var):
x = SharedArray.create(name, var.shape, dtype=var.dtype)
x[...] = var[...]
x.flags.writeable = False
return x
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count