File size: 9,310 Bytes
256a159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
"""Direct Generation Inferencer."""

import os
import os.path as osp
from typing import List, Optional

import mmengine
import torch
from tqdm import tqdm

from opencompass.models.base import BaseModel
from opencompass.registry import (ICL_EVALUATORS, ICL_INFERENCERS,
                                  TEXT_POSTPROCESSORS)

from ..icl_prompt_template import PromptTemplate
from ..icl_retriever import BaseRetriever
from ..utils.logging import get_logger
from .icl_base_inferencer import BaseInferencer, GenInferencerOutputHandler

logger = get_logger(__name__)


@ICL_INFERENCERS.register_module()
class AttackInferencer(BaseInferencer):
    """Generation Inferencer class to directly evaluate by generation.

    Attributes:
        model (:obj:`BaseModelWrapper`, optional): The module to inference.
        max_out_len (:obj:`int`, optional): Maximum number of tokenized words
            of the output.
        adv_key (:obj:`str`): Prompt key in template to be attacked.
        metric_key (:obj:`str`): Metric key to be returned and compared.
            Defaults to `accuracy`.
        max_seq_len (:obj:`int`, optional): Maximum number of tokenized words
            allowed by the LM.
        batch_size (:obj:`int`, optional): Batch size for the
            :obj:`DataLoader`.
        output_json_filepath (:obj:`str`, optional): File path for output
            `JSON` file.
        output_json_filename (:obj:`str`, optional): File name for output
            `JSON` file.
        gen_field_replace_token (:obj:`str`, optional): Used to replace the
            generation field token when generating prompts.
        save_every (:obj:`int`, optional): Save intermediate results every
            `save_every` iters. Defaults to 1.
        generation_kwargs (:obj:`Dict`, optional): Parameters for the
            :obj:`model.generate()` method.
    """

    def __init__(
            self,
            model: BaseModel,
            max_out_len: int,
            adv_key: str,
            metric_key: str = 'accuracy',
            max_seq_len: Optional[int] = None,
            batch_size: Optional[int] = 1,
            gen_field_replace_token: Optional[str] = '',
            output_json_filepath: Optional[str] = './icl_inference_output',
            output_json_filename: Optional[str] = 'predictions',
            save_every: Optional[int] = 1,
            dataset_cfg: Optional[List[int]] = None,
            **kwargs) -> None:
        super().__init__(
            model=model,
            max_seq_len=max_seq_len,
            batch_size=batch_size,
            output_json_filename=output_json_filename,
            output_json_filepath=output_json_filepath,
            **kwargs,
        )

        self.adv_key = adv_key
        self.metric_key = metric_key
        self.dataset_cfg = dataset_cfg
        self.eval_cfg = dataset_cfg['eval_cfg']
        self.output_column = dataset_cfg['reader_cfg']['output_column']
        self.gen_field_replace_token = gen_field_replace_token
        self.max_out_len = max_out_len

        if self.model.is_api and save_every is None:
            save_every = 1
        self.save_every = save_every

    def predict(self, adv_prompt) -> List:
        # 1. Preparation for output logs
        output_handler = GenInferencerOutputHandler()

        # if output_json_filepath is None:
        output_json_filepath = self.output_json_filepath
        # if output_json_filename is None:
        output_json_filename = self.output_json_filename

        # 2. Get results of retrieval process
        ice_idx_list = self.retriever.retrieve()

        # 3. Generate prompts for testing input
        prompt_list, label_list = self.get_generation_prompt_list_from_retriever_indices(  # noqa
            ice_idx_list, {self.adv_key: adv_prompt},
            self.retriever,
            self.gen_field_replace_token,
            max_seq_len=self.max_seq_len,
            ice_template=self.ice_template,
            prompt_template=self.prompt_template)

        # 3.1 Fetch and zip prompt & gold answer if output column exists
        ds_reader = self.retriever.dataset_reader
        if ds_reader.output_column:
            gold_ans = ds_reader.dataset['test'][ds_reader.output_column]
            prompt_list = list(zip(prompt_list, gold_ans))

        # Create tmp json file for saving intermediate results and future
        # resuming
        index = 0
        tmp_json_filepath = os.path.join(output_json_filepath,
                                         'tmp_' + output_json_filename)
        if osp.exists(tmp_json_filepath):
            # TODO: move resume to output handler
            tmp_result_dict = mmengine.load(tmp_json_filepath)
            output_handler.results_dict = tmp_result_dict
            index = len(tmp_result_dict)

        # 4. Wrap prompts with Dataloader
        dataloader = self.get_dataloader(prompt_list[index:], self.batch_size)

        # 5. Inference for prompts in each batch
        logger.info('Starting inference process...')
        for datum in tqdm(dataloader, disable=not self.is_main_process):
            if ds_reader.output_column:
                entry, golds = list(zip(*datum))
            else:
                entry = datum
                golds = [None for _ in range(len(entry))]
            # 5-1. Inference with local model
            with torch.no_grad():
                parsed_entries = self.model.parse_template(entry, mode='gen')
                results = self.model.generate_from_template(
                    entry, max_out_len=self.max_out_len)
                generated = results

            # 5-3. Save current output
            for prompt, prediction, gold in zip(parsed_entries, generated,
                                                golds):
                output_handler.save_results(prompt,
                                            prediction,
                                            index,
                                            gold=gold)
                index = index + 1

            # 5-4. Save intermediate results
            if (self.save_every is not None and index % self.save_every == 0
                    and self.is_main_process):
                output_handler.write_to_json(output_json_filepath,
                                             'tmp_' + output_json_filename)

        # 6. Output
        if self.is_main_process:
            os.makedirs(output_json_filepath, exist_ok=True)
            output_handler.write_to_json(output_json_filepath,
                                         output_json_filename)
            if osp.exists(tmp_json_filepath):
                os.remove(tmp_json_filepath)

        pred_strs = [
            sample['prediction']
            for sample in output_handler.results_dict.values()
        ]

        if 'pred_postprocessor' in self.eval_cfg:
            kwargs = self.eval_cfg['pred_postprocessor'].copy()
            proc = TEXT_POSTPROCESSORS.get(kwargs.pop('type'))
            pred_strs = [proc(s, **kwargs) for s in pred_strs]

        icl_evaluator = ICL_EVALUATORS.build(self.eval_cfg['evaluator'])
        result = icl_evaluator.score(predictions=pred_strs,
                                     references=label_list)
        score = result.get(self.metric_key)
        # try to shrink score to range 0-1
        return score / 100 if score > 1 else score

    def get_generation_prompt_list_from_retriever_indices(
            self,
            ice_idx_list: List[List[int]],
            extra_prompt: dict,
            retriever: BaseRetriever,
            gen_field_replace_token: str,
            max_seq_len: Optional[int] = None,
            ice_template: Optional[PromptTemplate] = None,
            prompt_template: Optional[PromptTemplate] = None):
        prompt_list = []
        label_list = []
        for idx, ice_idx in enumerate(ice_idx_list):
            ice = retriever.generate_ice(ice_idx, ice_template=ice_template)
            prompt = retriever.generate_prompt_for_adv_generate_task(
                idx,
                ice,
                extra_prompt,
                gen_field_replace_token=gen_field_replace_token,
                ice_template=ice_template,
                prompt_template=prompt_template)
            label = retriever.test_ds[idx][self.output_column]
            label_list.append(label)
            if max_seq_len is not None:
                prompt_token_num = self.model.get_token_len_from_template(
                    prompt, mode='gen')
                while len(ice_idx) > 0 and prompt_token_num > max_seq_len:
                    ice_idx = ice_idx[:-1]
                    ice = retriever.generate_ice(ice_idx,
                                                 ice_template=ice_template)
                    prompt = retriever.generate_prompt_for_adv_generate_task(
                        idx,
                        ice,
                        extra_prompt,
                        gen_field_replace_token=gen_field_replace_token,
                        ice_template=ice_template,
                        prompt_template=prompt_template)
                    prompt_token_num = self.model.get_token_len_from_template(
                        prompt, mode='gen')
            prompt_list.append(prompt)
        return prompt_list, label_list